微调流入量预测模型:整合优化算法和 TRMM 数据以提高精度

Enas Ali, Bilel Zerouali, Aqil Tariq, O. Katipoğlu, N. Bailek, Celso Augusto Guimarães Santos, Sherif S. M. Ghoneim, Abueza Reza Md. Towfiqul Islam
{"title":"微调流入量预测模型:整合优化算法和 TRMM 数据以提高精度","authors":"Enas Ali, Bilel Zerouali, Aqil Tariq, O. Katipoğlu, N. Bailek, Celso Augusto Guimarães Santos, Sherif S. M. Ghoneim, Abueza Reza Md. Towfiqul Islam","doi":"10.2166/wst.2024.222","DOIUrl":null,"url":null,"abstract":"\n This research explores machine learning algorithms for reservoir inflow prediction, including long short-term memory (LSTM), random forest (RF), and metaheuristic-optimized models. The impact of feature engineering techniques such as discrete wavelet transform (DWT) and XGBoost feature selection is investigated. LSTM shows promise, with LSTM-XGBoost exhibiting strong generalization from 179.81 m3/s RMSE (root mean square error) in training to 49.42 m3/s in testing. The RF-XGBoost and models incorporating DWT, like LSTM-DWT and RF-DWT, also perform well, underscoring the significance of feature engineering. Comparisons illustrate enhancements with DWT: LSTM and RF reduce training and testing RMSE substantially when using DWT. Metaheuristic models like MLP-ABC and LSSVR-PSO benefit from DWT as well, with the LSSVR-PSO-DWT model demonstrating excellent predictive accuracy, showing 133.97 m3/s RMSE in training and 47.08 m3/s RMSE in testing. This model synergistically combines LSSVR, PSO, and DWT, emerging as the top performers by effectively capturing intricate reservoir inflow patterns.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"60 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fine-tuning inflow prediction models: integrating optimization algorithms and TRMM data for enhanced accuracy\",\"authors\":\"Enas Ali, Bilel Zerouali, Aqil Tariq, O. Katipoğlu, N. Bailek, Celso Augusto Guimarães Santos, Sherif S. M. Ghoneim, Abueza Reza Md. Towfiqul Islam\",\"doi\":\"10.2166/wst.2024.222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This research explores machine learning algorithms for reservoir inflow prediction, including long short-term memory (LSTM), random forest (RF), and metaheuristic-optimized models. The impact of feature engineering techniques such as discrete wavelet transform (DWT) and XGBoost feature selection is investigated. LSTM shows promise, with LSTM-XGBoost exhibiting strong generalization from 179.81 m3/s RMSE (root mean square error) in training to 49.42 m3/s in testing. The RF-XGBoost and models incorporating DWT, like LSTM-DWT and RF-DWT, also perform well, underscoring the significance of feature engineering. Comparisons illustrate enhancements with DWT: LSTM and RF reduce training and testing RMSE substantially when using DWT. Metaheuristic models like MLP-ABC and LSSVR-PSO benefit from DWT as well, with the LSSVR-PSO-DWT model demonstrating excellent predictive accuracy, showing 133.97 m3/s RMSE in training and 47.08 m3/s RMSE in testing. This model synergistically combines LSSVR, PSO, and DWT, emerging as the top performers by effectively capturing intricate reservoir inflow patterns.\",\"PeriodicalId\":505935,\"journal\":{\"name\":\"Water Science & Technology\",\"volume\":\"60 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了水库流入量预测的机器学习算法,包括长短期记忆(LSTM)、随机森林(RF)和元搜索优化模型。研究了离散小波变换 (DWT) 和 XGBoost 特征选择等特征工程技术的影响。LSTM 显示出良好的前景,LSTM-XGBoost 表现出很强的泛化能力,从训练中的 179.81 立方米/秒 RMSE(均方根误差)到测试中的 49.42 立方米/秒。RF-XGBoost 和包含 DWT 的模型(如 LSTM-DWT 和 RF-DWT)也表现出色,凸显了特征工程的重要性。比较显示了使用 DWT 时的改进:使用 DWT 时,LSTM 和 RF 大幅降低了训练和测试 RMSE。MLP-ABC 和 LSSVR-PSO 等元启发式模型也从 DWT 中获益,其中 LSSVR-PSO-DWT 模型显示出出色的预测准确性,在训练中显示出 133.97 m3/s RMSE,在测试中显示出 47.08 m3/s RMSE。该模型协同结合了 LSSVR、PSO 和 DWT,通过有效捕捉错综复杂的储层流入模式,成为表现最佳的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fine-tuning inflow prediction models: integrating optimization algorithms and TRMM data for enhanced accuracy
This research explores machine learning algorithms for reservoir inflow prediction, including long short-term memory (LSTM), random forest (RF), and metaheuristic-optimized models. The impact of feature engineering techniques such as discrete wavelet transform (DWT) and XGBoost feature selection is investigated. LSTM shows promise, with LSTM-XGBoost exhibiting strong generalization from 179.81 m3/s RMSE (root mean square error) in training to 49.42 m3/s in testing. The RF-XGBoost and models incorporating DWT, like LSTM-DWT and RF-DWT, also perform well, underscoring the significance of feature engineering. Comparisons illustrate enhancements with DWT: LSTM and RF reduce training and testing RMSE substantially when using DWT. Metaheuristic models like MLP-ABC and LSSVR-PSO benefit from DWT as well, with the LSSVR-PSO-DWT model demonstrating excellent predictive accuracy, showing 133.97 m3/s RMSE in training and 47.08 m3/s RMSE in testing. This model synergistically combines LSSVR, PSO, and DWT, emerging as the top performers by effectively capturing intricate reservoir inflow patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信