通过伽马函数、贝塔函数和超几何函数对谐波模糊数凸性的奥斯特洛夫斯基式不等式的一些新估计

Axioms Pub Date : 2024-07-04 DOI:10.3390/axioms13070455
A. Alshehry, L. Ciurdariu, Yaser Saber, Amal F. Soliman
{"title":"通过伽马函数、贝塔函数和超几何函数对谐波模糊数凸性的奥斯特洛夫斯基式不等式的一些新估计","authors":"A. Alshehry, L. Ciurdariu, Yaser Saber, Amal F. Soliman","doi":"10.3390/axioms13070455","DOIUrl":null,"url":null,"abstract":"This paper demonstrates several of Ostrowski-type inequalities for fuzzy number functions and investigates their connections with other inequalities. Specifically, employing the Aumann integral and the Kulisch–Miranker order, as well as the inclusion order on the space of real and compact intervals, we establish various Ostrowski-type inequalities for fuzzy-valued mappings (F·V·Ms). Furthermore, by employing diverse orders, we establish connections with the classical versions of Ostrowski-type inequalities. Additionally, we explore new ideas and results rooted in submodular measures, accompanied by examples and applications to illustrate our findings. Moreover, by using special functions, we have provided some applications of Ostrowski-type inequalities.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"71 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some New Estimations of Ostrowski-Type Inequalities for Harmonic Fuzzy Number Convexity via Gamma, Beta and Hypergeometric Functions\",\"authors\":\"A. Alshehry, L. Ciurdariu, Yaser Saber, Amal F. Soliman\",\"doi\":\"10.3390/axioms13070455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates several of Ostrowski-type inequalities for fuzzy number functions and investigates their connections with other inequalities. Specifically, employing the Aumann integral and the Kulisch–Miranker order, as well as the inclusion order on the space of real and compact intervals, we establish various Ostrowski-type inequalities for fuzzy-valued mappings (F·V·Ms). Furthermore, by employing diverse orders, we establish connections with the classical versions of Ostrowski-type inequalities. Additionally, we explore new ideas and results rooted in submodular measures, accompanied by examples and applications to illustrate our findings. Moreover, by using special functions, we have provided some applications of Ostrowski-type inequalities.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"71 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13070455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13070455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了模糊数函数的几个奥斯特洛夫斯基式不等式,并研究了它们与其他不等式的联系。具体来说,我们利用奥曼积分和库利施-米兰克阶,以及实区间和紧凑区间空间上的包含阶,建立了模糊值映射(F-V-Ms)的各种奥斯特洛夫斯基式不等式。此外,通过使用不同的阶,我们建立了与经典版本的奥斯特洛夫斯基式不等式的联系。此外,我们还探索了植根于亚模量的新观点和新结果,并通过实例和应用来说明我们的发现。此外,通过使用特殊函数,我们还提供了一些奥斯特洛夫斯基式不等式的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some New Estimations of Ostrowski-Type Inequalities for Harmonic Fuzzy Number Convexity via Gamma, Beta and Hypergeometric Functions
This paper demonstrates several of Ostrowski-type inequalities for fuzzy number functions and investigates their connections with other inequalities. Specifically, employing the Aumann integral and the Kulisch–Miranker order, as well as the inclusion order on the space of real and compact intervals, we establish various Ostrowski-type inequalities for fuzzy-valued mappings (F·V·Ms). Furthermore, by employing diverse orders, we establish connections with the classical versions of Ostrowski-type inequalities. Additionally, we explore new ideas and results rooted in submodular measures, accompanied by examples and applications to illustrate our findings. Moreover, by using special functions, we have provided some applications of Ostrowski-type inequalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信