罗森奥-伯格斯方程初界值问题的二阶收敛差分方案

IF 0.8 4区 数学 Q2 MATHEMATICS
Sitong Dong, Xin Zhang, Yuanfeng Jin
{"title":"罗森奥-伯格斯方程初界值问题的二阶收敛差分方案","authors":"Sitong Dong, Xin Zhang, Yuanfeng Jin","doi":"10.58997/ejde.2024.38","DOIUrl":null,"url":null,"abstract":"We construct a two-level implicit nonlinear finite difference scheme for the initial boundary value problem of Rosenau-Burgers equation based on the method of order reduction. We discuss conservation, unique solvability, and convergence for the difference scheme. The new scheme is shown to be second-order convergent in time and space. Finally, numerical simulations illustrate our theoretical  analysis.\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/38/abstr.html","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A second order convergent difference scheme for the initial-boundary value problem of Rosenau-Burgers equation\",\"authors\":\"Sitong Dong, Xin Zhang, Yuanfeng Jin\",\"doi\":\"10.58997/ejde.2024.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a two-level implicit nonlinear finite difference scheme for the initial boundary value problem of Rosenau-Burgers equation based on the method of order reduction. We discuss conservation, unique solvability, and convergence for the difference scheme. The new scheme is shown to be second-order convergent in time and space. Finally, numerical simulations illustrate our theoretical  analysis.\\nFor more information see https://ejde.math.txstate.edu/Volumes/2024/38/abstr.html\",\"PeriodicalId\":49213,\"journal\":{\"name\":\"Electronic Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.58997/ejde.2024.38\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2024.38","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们基于阶次缩减法,为罗森诺-伯格斯方程的初始边界值问题构建了一个两级隐式非线性有限差分方案。我们讨论了差分方案的守恒性、唯一可解性和收敛性。新方案在时间和空间上都具有二阶收敛性。最后,数值模拟说明了我们的理论分析。更多信息,请参见 https://ejde.math.txstate.edu/Volumes/2024/38/abstr.html。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A second order convergent difference scheme for the initial-boundary value problem of Rosenau-Burgers equation
We construct a two-level implicit nonlinear finite difference scheme for the initial boundary value problem of Rosenau-Burgers equation based on the method of order reduction. We discuss conservation, unique solvability, and convergence for the difference scheme. The new scheme is shown to be second-order convergent in time and space. Finally, numerical simulations illustrate our theoretical  analysis. For more information see https://ejde.math.txstate.edu/Volumes/2024/38/abstr.html
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信