{"title":"用ifs揭示质数分布的偏差","authors":"Harlan J. Brothers","doi":"10.1142/s0218348x24501032","DOIUrl":null,"url":null,"abstract":"It was long assumed that the pseudorandom distribution of prime numbers was free of biases. Specifically, while the prime number theorem gives an asymptotic measure of the probability of finding a prime number and Dirichlet’s theorem on arithmetic progressions tells us about the distribution of primes across residue classes, there was no reason to believe that consecutive primes might “know” anything about each other — that they might, for example, tend to avoid ending in the same digit. Here, we show that the Iterated Function System method (IFS) can be a surprisingly useful tool for revealing such unintuitive results and for more generally studying structure in number theory. Our experimental findings from a study in 2013 include fractal patterns that reveal “repulsive” phenomena among primes in a wide range of classes having specific congruence properties. Some of the phenomena shown in our computations and interpretation relate to more recent work by Lemke Oliver and Soundararajan on biases between consecutive primes. Here, we explore and extend those results by demonstrating how IFS points to the precise manner in which such biases behave from a dynamic standpoint. We also show that, surprisingly, composite numbers can exhibit a notably similar bias.","PeriodicalId":501262,"journal":{"name":"Fractals","volume":" 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"USING IFS TO REVEAL BIASES IN THE DISTRIBUTION OF PRIME NUMBERS\",\"authors\":\"Harlan J. Brothers\",\"doi\":\"10.1142/s0218348x24501032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It was long assumed that the pseudorandom distribution of prime numbers was free of biases. Specifically, while the prime number theorem gives an asymptotic measure of the probability of finding a prime number and Dirichlet’s theorem on arithmetic progressions tells us about the distribution of primes across residue classes, there was no reason to believe that consecutive primes might “know” anything about each other — that they might, for example, tend to avoid ending in the same digit. Here, we show that the Iterated Function System method (IFS) can be a surprisingly useful tool for revealing such unintuitive results and for more generally studying structure in number theory. Our experimental findings from a study in 2013 include fractal patterns that reveal “repulsive” phenomena among primes in a wide range of classes having specific congruence properties. Some of the phenomena shown in our computations and interpretation relate to more recent work by Lemke Oliver and Soundararajan on biases between consecutive primes. Here, we explore and extend those results by demonstrating how IFS points to the precise manner in which such biases behave from a dynamic standpoint. We also show that, surprisingly, composite numbers can exhibit a notably similar bias.\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\" 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24501032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24501032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
USING IFS TO REVEAL BIASES IN THE DISTRIBUTION OF PRIME NUMBERS
It was long assumed that the pseudorandom distribution of prime numbers was free of biases. Specifically, while the prime number theorem gives an asymptotic measure of the probability of finding a prime number and Dirichlet’s theorem on arithmetic progressions tells us about the distribution of primes across residue classes, there was no reason to believe that consecutive primes might “know” anything about each other — that they might, for example, tend to avoid ending in the same digit. Here, we show that the Iterated Function System method (IFS) can be a surprisingly useful tool for revealing such unintuitive results and for more generally studying structure in number theory. Our experimental findings from a study in 2013 include fractal patterns that reveal “repulsive” phenomena among primes in a wide range of classes having specific congruence properties. Some of the phenomena shown in our computations and interpretation relate to more recent work by Lemke Oliver and Soundararajan on biases between consecutive primes. Here, we explore and extend those results by demonstrating how IFS points to the precise manner in which such biases behave from a dynamic standpoint. We also show that, surprisingly, composite numbers can exhibit a notably similar bias.