芽孢杆菌 NTLG2-20 和减少氮肥用量对土壤特性和花生产量的影响

Q3 Engineering
N. Chuong
{"title":"芽孢杆菌 NTLG2-20 和减少氮肥用量对土壤特性和花生产量的影响","authors":"N. Chuong","doi":"10.21924/cst.9.1.2024.1423","DOIUrl":null,"url":null,"abstract":"The excessive use of nitrogen (N) fertilizers has led to farmland degradation and reduced crop yields. To address this drawback, reducing the amount of nitrogen fertilizer and Bacillus sp. NTLG2-20 inoculant are the optimal cultivation method. The impact of different N rates (0, 20, and 40 kg ha-1) combined with the Bacillus sp. NTLG2-20 inoculant on soil chemical properties, growth, development, and peanut yield was designed in the field in Phuoc Hung commune, An Phu district from May to August 2023. The field experiment was designed with 6 treatments and 4 replications. The research results showed that different N rates adequately augmented soil chemical traits such as pH, cation exchange capacity (CEC), soil organic matter (SOM), total N, available phosphorous (AP), and exchangeable potassium (EK). Furthermore, different N fertilizers rates combined with Bacillus sp. NTLG2-20 inoculant adequately augmented plant height, number of leaves, total chlorophyll, nodulous number and weight per groundnut plant. Reducing N fertilizer application by 50% (20 kg N ha-1) was the optimal N reduction rate when combined with the Bacillus sp. NTLG2-20, which resulted in 17.6% higher peanut yield compared to no N application and no difference compared to 100% of recommended N application (P<0.01)). Bacillus sp. NTLG2-20 inoculant increased peanut yield by 19.6% when compared to no Bacillus sp. NTLG2-20 inoculant (P<0.01). Nitrogen – fixing ability of Bacillus sp. NTLG2-20 promoted peanut yield and reduced fifty percentage of the N fertilizer application. Bacillus sp. NTLG2-20 is the promising species for the production of biological fertilizer in the future.","PeriodicalId":36437,"journal":{"name":"Communications in Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of bacillus sp. NTLG2-20 and reduced nitrogen fertilization on soil properties and peanut yield\",\"authors\":\"N. Chuong\",\"doi\":\"10.21924/cst.9.1.2024.1423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The excessive use of nitrogen (N) fertilizers has led to farmland degradation and reduced crop yields. To address this drawback, reducing the amount of nitrogen fertilizer and Bacillus sp. NTLG2-20 inoculant are the optimal cultivation method. The impact of different N rates (0, 20, and 40 kg ha-1) combined with the Bacillus sp. NTLG2-20 inoculant on soil chemical properties, growth, development, and peanut yield was designed in the field in Phuoc Hung commune, An Phu district from May to August 2023. The field experiment was designed with 6 treatments and 4 replications. The research results showed that different N rates adequately augmented soil chemical traits such as pH, cation exchange capacity (CEC), soil organic matter (SOM), total N, available phosphorous (AP), and exchangeable potassium (EK). Furthermore, different N fertilizers rates combined with Bacillus sp. NTLG2-20 inoculant adequately augmented plant height, number of leaves, total chlorophyll, nodulous number and weight per groundnut plant. Reducing N fertilizer application by 50% (20 kg N ha-1) was the optimal N reduction rate when combined with the Bacillus sp. NTLG2-20, which resulted in 17.6% higher peanut yield compared to no N application and no difference compared to 100% of recommended N application (P<0.01)). Bacillus sp. NTLG2-20 inoculant increased peanut yield by 19.6% when compared to no Bacillus sp. NTLG2-20 inoculant (P<0.01). Nitrogen – fixing ability of Bacillus sp. NTLG2-20 promoted peanut yield and reduced fifty percentage of the N fertilizer application. Bacillus sp. NTLG2-20 is the promising species for the production of biological fertilizer in the future.\",\"PeriodicalId\":36437,\"journal\":{\"name\":\"Communications in Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21924/cst.9.1.2024.1423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21924/cst.9.1.2024.1423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

过量使用氮肥导致农田退化和作物减产。为解决这一弊端,减少氮肥用量和芽孢杆菌 NTLG2-20 接种剂是最佳的栽培方法。2023 年 5 月至 8 月,在安福县福洪乡田间设计了不同氮肥用量(0、20 和 40 千克/公顷-1)结合芽孢杆菌 NTLG2-20 接种剂对土壤化学性质、生长发育和花生产量的影响。田间试验设计了 6 个处理和 4 次重复。研究结果表明,不同的氮肥施用量能充分提高土壤化学性状,如 pH 值、阳离子交换容量(CEC)、土壤有机质(SOM)、全氮、可利用磷(AP)和可交换钾(EK)。此外,不同的氮肥施用量与芽孢杆菌 NTLG2-20 接种剂结合使用,能充分提高花生的株高、叶片数、叶绿素总量、有节数量和单株重量。与芽孢杆菌 NTLG2-20 结合使用时,氮肥施用量减少 50%(20 千克氮公顷-1)是最佳的氮肥施用量减少率,与不施用氮肥相比,花生产量提高了 17.6%,与建议的 100%氮肥施用量相比没有差异(P<0.01))。接种芽孢杆菌 NTLG2-20 与不接种芽孢杆菌 NTLG2-20 相比,花生产量提高了 19.6%(P<0.01)。芽孢杆菌 NTLG2-20 的固氮能力提高了花生产量,降低了氮肥施用量的 50%。芽孢杆菌 NTLG2-20 是未来有望生产生物肥料的菌种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of bacillus sp. NTLG2-20 and reduced nitrogen fertilization on soil properties and peanut yield
The excessive use of nitrogen (N) fertilizers has led to farmland degradation and reduced crop yields. To address this drawback, reducing the amount of nitrogen fertilizer and Bacillus sp. NTLG2-20 inoculant are the optimal cultivation method. The impact of different N rates (0, 20, and 40 kg ha-1) combined with the Bacillus sp. NTLG2-20 inoculant on soil chemical properties, growth, development, and peanut yield was designed in the field in Phuoc Hung commune, An Phu district from May to August 2023. The field experiment was designed with 6 treatments and 4 replications. The research results showed that different N rates adequately augmented soil chemical traits such as pH, cation exchange capacity (CEC), soil organic matter (SOM), total N, available phosphorous (AP), and exchangeable potassium (EK). Furthermore, different N fertilizers rates combined with Bacillus sp. NTLG2-20 inoculant adequately augmented plant height, number of leaves, total chlorophyll, nodulous number and weight per groundnut plant. Reducing N fertilizer application by 50% (20 kg N ha-1) was the optimal N reduction rate when combined with the Bacillus sp. NTLG2-20, which resulted in 17.6% higher peanut yield compared to no N application and no difference compared to 100% of recommended N application (P<0.01)). Bacillus sp. NTLG2-20 inoculant increased peanut yield by 19.6% when compared to no Bacillus sp. NTLG2-20 inoculant (P<0.01). Nitrogen – fixing ability of Bacillus sp. NTLG2-20 promoted peanut yield and reduced fifty percentage of the N fertilizer application. Bacillus sp. NTLG2-20 is the promising species for the production of biological fertilizer in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Science and Technology
Communications in Science and Technology Engineering-Engineering (all)
CiteScore
3.20
自引率
0.00%
发文量
13
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信