Reza Saatchi, Heather Elphick, Jennifer Rowson, Mark Wesseler, Jacob Marris, Sarah Shortland, Lowri Thomas
{"title":"开发新型儿科中央睡眠呼吸监测仪原型","authors":"Reza Saatchi, Heather Elphick, Jennifer Rowson, Mark Wesseler, Jacob Marris, Sarah Shortland, Lowri Thomas","doi":"10.3390/technologies12070116","DOIUrl":null,"url":null,"abstract":"A new prototype device to monitor breathing in children diagnosed with central sleep apnoea (CSA) was developed. CSA is caused by the failure of central nervous system signals to the respiratory muscles and results in intermittent breathing pauses during sleep. Children diagnosed with CSA require home respiration monitoring during sleep. Apnoea monitors initiate an audio alarm when the breath-to-breath respiration interval exceeds a preset time. This allows the child’s parents to attend to the child to ensure safety. The article describes the development of the monitor’s hardware, software, and evaluation. Features of the device include the detection of abnormal respiratory pauses and the generation of an associated alarm, the ability to record the respiratory signal and its storage using an on-board disk, miniaturised hardware, child-friendliness, cost-effectiveness, and ease of use. The device was evaluated on 10 healthy adult volunteers with a mean age of 46.6 years (and a standard deviation of 14.4 years). The participants randomly intentionally paused their breathing during the recording. The device detected and provided an alarm when the respiratory pauses exceeded the preset time. The respiration rates determined from the device closely matched the values from a commercial respiration monitor. The study indicated the peak-detection method of the respiration rate measurement is more robust than the zero-crossing method.","PeriodicalId":22341,"journal":{"name":"Technologies","volume":" 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a New Prototype Paediatric Central Sleep Apnoea Monitor\",\"authors\":\"Reza Saatchi, Heather Elphick, Jennifer Rowson, Mark Wesseler, Jacob Marris, Sarah Shortland, Lowri Thomas\",\"doi\":\"10.3390/technologies12070116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new prototype device to monitor breathing in children diagnosed with central sleep apnoea (CSA) was developed. CSA is caused by the failure of central nervous system signals to the respiratory muscles and results in intermittent breathing pauses during sleep. Children diagnosed with CSA require home respiration monitoring during sleep. Apnoea monitors initiate an audio alarm when the breath-to-breath respiration interval exceeds a preset time. This allows the child’s parents to attend to the child to ensure safety. The article describes the development of the monitor’s hardware, software, and evaluation. Features of the device include the detection of abnormal respiratory pauses and the generation of an associated alarm, the ability to record the respiratory signal and its storage using an on-board disk, miniaturised hardware, child-friendliness, cost-effectiveness, and ease of use. The device was evaluated on 10 healthy adult volunteers with a mean age of 46.6 years (and a standard deviation of 14.4 years). The participants randomly intentionally paused their breathing during the recording. The device detected and provided an alarm when the respiratory pauses exceeded the preset time. The respiration rates determined from the device closely matched the values from a commercial respiration monitor. The study indicated the peak-detection method of the respiration rate measurement is more robust than the zero-crossing method.\",\"PeriodicalId\":22341,\"journal\":{\"name\":\"Technologies\",\"volume\":\" 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/technologies12070116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/technologies12070116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of a New Prototype Paediatric Central Sleep Apnoea Monitor
A new prototype device to monitor breathing in children diagnosed with central sleep apnoea (CSA) was developed. CSA is caused by the failure of central nervous system signals to the respiratory muscles and results in intermittent breathing pauses during sleep. Children diagnosed with CSA require home respiration monitoring during sleep. Apnoea monitors initiate an audio alarm when the breath-to-breath respiration interval exceeds a preset time. This allows the child’s parents to attend to the child to ensure safety. The article describes the development of the monitor’s hardware, software, and evaluation. Features of the device include the detection of abnormal respiratory pauses and the generation of an associated alarm, the ability to record the respiratory signal and its storage using an on-board disk, miniaturised hardware, child-friendliness, cost-effectiveness, and ease of use. The device was evaluated on 10 healthy adult volunteers with a mean age of 46.6 years (and a standard deviation of 14.4 years). The participants randomly intentionally paused their breathing during the recording. The device detected and provided an alarm when the respiratory pauses exceeded the preset time. The respiration rates determined from the device closely matched the values from a commercial respiration monitor. The study indicated the peak-detection method of the respiration rate measurement is more robust than the zero-crossing method.