{"title":"金融市场对事件或信息的反应函数","authors":"Bo Li, Guangle Du","doi":"10.1007/s40745-024-00565-w","DOIUrl":null,"url":null,"abstract":"<div><p>Observations indicate that the distributions of stock returns in financial markets usually do not conform to normal distributions, but rather exhibit characteristics of high peaks, fat tails and biases. In this work, we assume that the effects of events or information on prices obey normal distribution, while financial markets often overreact or underreact to events or information, resulting in non normal distributions of stock returns. Based on the above assumptions, we for the first time propose a reaction function for a financial market reacting to events or information, and a model based on it to describe the distribution of real stock returns. Our analysis of the returns of China Securities Index 300 (CSI 300), the Standard & Poor’s 500 Index (SPX or S &P 500) and the Nikkei 225 Index (N225) at different time scales shows that financial markets often underreact to events or information with minor impacts, overreact to events or information with relatively significant impacts, and react slightly stronger to positive events or information than to negative ones. In addition, differences in financial markets and time scales of returns can also affect the shapes of the reaction functions.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reaction Function for Financial Market Reacting to Events or Information\",\"authors\":\"Bo Li, Guangle Du\",\"doi\":\"10.1007/s40745-024-00565-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Observations indicate that the distributions of stock returns in financial markets usually do not conform to normal distributions, but rather exhibit characteristics of high peaks, fat tails and biases. In this work, we assume that the effects of events or information on prices obey normal distribution, while financial markets often overreact or underreact to events or information, resulting in non normal distributions of stock returns. Based on the above assumptions, we for the first time propose a reaction function for a financial market reacting to events or information, and a model based on it to describe the distribution of real stock returns. Our analysis of the returns of China Securities Index 300 (CSI 300), the Standard & Poor’s 500 Index (SPX or S &P 500) and the Nikkei 225 Index (N225) at different time scales shows that financial markets often underreact to events or information with minor impacts, overreact to events or information with relatively significant impacts, and react slightly stronger to positive events or information than to negative ones. In addition, differences in financial markets and time scales of returns can also affect the shapes of the reaction functions.</p></div>\",\"PeriodicalId\":36280,\"journal\":{\"name\":\"Annals of Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40745-024-00565-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00565-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
Reaction Function for Financial Market Reacting to Events or Information
Observations indicate that the distributions of stock returns in financial markets usually do not conform to normal distributions, but rather exhibit characteristics of high peaks, fat tails and biases. In this work, we assume that the effects of events or information on prices obey normal distribution, while financial markets often overreact or underreact to events or information, resulting in non normal distributions of stock returns. Based on the above assumptions, we for the first time propose a reaction function for a financial market reacting to events or information, and a model based on it to describe the distribution of real stock returns. Our analysis of the returns of China Securities Index 300 (CSI 300), the Standard & Poor’s 500 Index (SPX or S &P 500) and the Nikkei 225 Index (N225) at different time scales shows that financial markets often underreact to events or information with minor impacts, overreact to events or information with relatively significant impacts, and react slightly stronger to positive events or information than to negative ones. In addition, differences in financial markets and time scales of returns can also affect the shapes of the reaction functions.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.