利用 LSTM 循环神经网络预测糖尿病患者血糖水平的实验

Anderson Mosquera Ruiz
{"title":"利用 LSTM 循环神经网络预测糖尿病患者血糖水平的实验","authors":"Anderson Mosquera Ruiz","doi":"10.21158/23823399.v11.n1.2023.3688","DOIUrl":null,"url":null,"abstract":"La diabetes es una enfermedad en la cual el cuerpo no procesa de manera adecuada la glucosa; el tratamiento para esta enfermedad se basa en el autocuidado del paciente, sus tendencias dietarias, el ejercicio y la administración de insulina. Predecir los niveles de glucosa futuros puede ser de gran ayuda para que el paciente y el personal médico que lo atiende determinen estrategias que mantengan sus niveles de glucosa en un rango que no sea peligroso. Las técnicas de aprendizaje profundo, entre otras cosas, permiten predecir valores en una serie temporal. En la actualidad, la técnica más usada es la predicción mediante redes neuronales recurrentes tipo LSTM. Este artículo se propone realizar experimentos variando los parámetros de redes neuronales tipo LSTM para determinar si dichos parámetros tienen alguna influencia en la precisión de la predicción del modelo.","PeriodicalId":291171,"journal":{"name":"Revista Ontare","volume":" 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimentos con redes neuronales recurrentes LSTM para la predicción del nivel de glucosa de pacientes con diabetes\",\"authors\":\"Anderson Mosquera Ruiz\",\"doi\":\"10.21158/23823399.v11.n1.2023.3688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"La diabetes es una enfermedad en la cual el cuerpo no procesa de manera adecuada la glucosa; el tratamiento para esta enfermedad se basa en el autocuidado del paciente, sus tendencias dietarias, el ejercicio y la administración de insulina. Predecir los niveles de glucosa futuros puede ser de gran ayuda para que el paciente y el personal médico que lo atiende determinen estrategias que mantengan sus niveles de glucosa en un rango que no sea peligroso. Las técnicas de aprendizaje profundo, entre otras cosas, permiten predecir valores en una serie temporal. En la actualidad, la técnica más usada es la predicción mediante redes neuronales recurrentes tipo LSTM. Este artículo se propone realizar experimentos variando los parámetros de redes neuronales tipo LSTM para determinar si dichos parámetros tienen alguna influencia en la precisión de la predicción del modelo.\",\"PeriodicalId\":291171,\"journal\":{\"name\":\"Revista Ontare\",\"volume\":\" 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Ontare\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21158/23823399.v11.n1.2023.3688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Ontare","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21158/23823399.v11.n1.2023.3688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病是一种身体不能正常处理葡萄糖的疾病;这种疾病的治疗以自我保健、饮食规律、运动和胰岛素注射为基础。预测未来的血糖水平可以帮助患者及其护理人员确定将血糖水平保持在安全范围内的策略。深度学习技术等可以预测时间序列的数值。目前,应用最广泛的技术是使用 LSTM 型循环神经网络进行预测。本文旨在通过实验改变 LSTM 神经网络的参数,以确定这些参数是否会对模型的预测准确性产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimentos con redes neuronales recurrentes LSTM para la predicción del nivel de glucosa de pacientes con diabetes
La diabetes es una enfermedad en la cual el cuerpo no procesa de manera adecuada la glucosa; el tratamiento para esta enfermedad se basa en el autocuidado del paciente, sus tendencias dietarias, el ejercicio y la administración de insulina. Predecir los niveles de glucosa futuros puede ser de gran ayuda para que el paciente y el personal médico que lo atiende determinen estrategias que mantengan sus niveles de glucosa en un rango que no sea peligroso. Las técnicas de aprendizaje profundo, entre otras cosas, permiten predecir valores en una serie temporal. En la actualidad, la técnica más usada es la predicción mediante redes neuronales recurrentes tipo LSTM. Este artículo se propone realizar experimentos variando los parámetros de redes neuronales tipo LSTM para determinar si dichos parámetros tienen alguna influencia en la precisión de la predicción del modelo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信