利用机器学习技术通过检查云软件检测漏洞

Q4 Mathematics
G. P. C. V. Krishna, Vivekananda Reddy
{"title":"利用机器学习技术通过检查云软件检测漏洞","authors":"G. P. C. V. Krishna, Vivekananda Reddy","doi":"10.52783/cana.v31.997","DOIUrl":null,"url":null,"abstract":"This research proposes a vulnerability prediction approach that analyzes functions/methods/classes in software systems using static analysis and machine learning models. The proposed approach outperformed other vulnerability prediction approaches in publicly available datasets, providing valuable insights to prioritize vulnerability remediation efforts. This approach has the potential to improve software security and help software development teams develop more secure software systems.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Vulnerabilities Through the Examination of Software in Cloud using Machine Learning Techniques\",\"authors\":\"G. P. C. V. Krishna, Vivekananda Reddy\",\"doi\":\"10.52783/cana.v31.997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes a vulnerability prediction approach that analyzes functions/methods/classes in software systems using static analysis and machine learning models. The proposed approach outperformed other vulnerability prediction approaches in publicly available datasets, providing valuable insights to prioritize vulnerability remediation efforts. This approach has the potential to improve software security and help software development teams develop more secure software systems.\",\"PeriodicalId\":40036,\"journal\":{\"name\":\"Communications on Applied Nonlinear Analysis\",\"volume\":\" 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Applied Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52783/cana.v31.997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种利用静态分析和机器学习模型分析软件系统中的函数/方法/类的漏洞预测方法。所提出的方法在公开数据集中的表现优于其他漏洞预测方法,为确定漏洞修复工作的优先次序提供了宝贵的见解。这种方法有望提高软件安全性,帮助软件开发团队开发出更安全的软件系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Vulnerabilities Through the Examination of Software in Cloud using Machine Learning Techniques
This research proposes a vulnerability prediction approach that analyzes functions/methods/classes in software systems using static analysis and machine learning models. The proposed approach outperformed other vulnerability prediction approaches in publicly available datasets, providing valuable insights to prioritize vulnerability remediation efforts. This approach has the potential to improve software security and help software development teams develop more secure software systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信