Joel Baptista, Afonso Castro, Manuel Gomes, Pedro Amaral, Vítor M. F. Santos, Filipe Silva, Miguel Oliveira
{"title":"具有基于学习的交互能力的人机协作制造单元","authors":"Joel Baptista, Afonso Castro, Manuel Gomes, Pedro Amaral, Vítor M. F. Santos, Filipe Silva, Miguel Oliveira","doi":"10.3390/robotics13070107","DOIUrl":null,"url":null,"abstract":"This paper presents a collaborative manufacturing cell implemented in a laboratory setting, focusing on developing learning-based interaction abilities to enhance versatility and ease of use. The key components of the system include 3D real-time volumetric monitoring for safety, visual recognition of hand gestures for human-to-robot communication, classification of physical-contact-based interaction primitives during handover operations, and detection of hand–object interactions to anticipate human intentions. Due to the nature and complexity of perception, deep-learning-based techniques were used to enhance robustness and adaptability. The main components are integrated in a system containing multiple functionalities, coordinated through a dedicated state machine. This ensures appropriate actions and reactions based on events, enabling the execution of specific modules to complete a given multi-step task. An ROS-based architecture supports the software infrastructure among sensor interfacing, data processing, and robot and gripper controllers nodes. The result is demonstrated by a functional use case that involves multiple tasks and behaviors, paving the way for the deployment of more advanced collaborative cells in manufacturing contexts.","PeriodicalId":506759,"journal":{"name":"Robotics","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Human–Robot Collaborative Manufacturing Cell with Learning-Based Interaction Abilities\",\"authors\":\"Joel Baptista, Afonso Castro, Manuel Gomes, Pedro Amaral, Vítor M. F. Santos, Filipe Silva, Miguel Oliveira\",\"doi\":\"10.3390/robotics13070107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a collaborative manufacturing cell implemented in a laboratory setting, focusing on developing learning-based interaction abilities to enhance versatility and ease of use. The key components of the system include 3D real-time volumetric monitoring for safety, visual recognition of hand gestures for human-to-robot communication, classification of physical-contact-based interaction primitives during handover operations, and detection of hand–object interactions to anticipate human intentions. Due to the nature and complexity of perception, deep-learning-based techniques were used to enhance robustness and adaptability. The main components are integrated in a system containing multiple functionalities, coordinated through a dedicated state machine. This ensures appropriate actions and reactions based on events, enabling the execution of specific modules to complete a given multi-step task. An ROS-based architecture supports the software infrastructure among sensor interfacing, data processing, and robot and gripper controllers nodes. The result is demonstrated by a functional use case that involves multiple tasks and behaviors, paving the way for the deployment of more advanced collaborative cells in manufacturing contexts.\",\"PeriodicalId\":506759,\"journal\":{\"name\":\"Robotics\",\"volume\":\" 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/robotics13070107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/robotics13070107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human–Robot Collaborative Manufacturing Cell with Learning-Based Interaction Abilities
This paper presents a collaborative manufacturing cell implemented in a laboratory setting, focusing on developing learning-based interaction abilities to enhance versatility and ease of use. The key components of the system include 3D real-time volumetric monitoring for safety, visual recognition of hand gestures for human-to-robot communication, classification of physical-contact-based interaction primitives during handover operations, and detection of hand–object interactions to anticipate human intentions. Due to the nature and complexity of perception, deep-learning-based techniques were used to enhance robustness and adaptability. The main components are integrated in a system containing multiple functionalities, coordinated through a dedicated state machine. This ensures appropriate actions and reactions based on events, enabling the execution of specific modules to complete a given multi-step task. An ROS-based architecture supports the software infrastructure among sensor interfacing, data processing, and robot and gripper controllers nodes. The result is demonstrated by a functional use case that involves multiple tasks and behaviors, paving the way for the deployment of more advanced collaborative cells in manufacturing contexts.