使用指数分布族建立尼日利亚降雨数据模型:比较研究

E. S. Oguntade, Timileyin K. Babalola, D. Oladimeji
{"title":"使用指数分布族建立尼日利亚降雨数据模型:比较研究","authors":"E. S. Oguntade, Timileyin K. Babalola, D. Oladimeji","doi":"10.4314/dujopas.v10i2b.15","DOIUrl":null,"url":null,"abstract":"In response to the growing concern about climate change, the study focuses on rainfall, a complex and challenging meteorological  variable to predict compared to temperature. This research introduces an innovative approach to model rainfall data, leveraging  probability distributions from the exponential family. The study utilizes secondary data encompassing monthly rainfall measurements in  millimeters (mm) spanning from 1986 to 2020, obtained from the Nigeria Meteorological Agency (NiMET) – covering a span of thirty-five  years. To identify the most suitable distribution, various model efficiency criteria, including log-likelihood, Kolmogorov-Smirnov test,  Cramer-Von Mises, Anderson Darling, and Akaike Information Criterion (AIC), are employed. The analysis highlights the Weibull  distribution as the most fitting model, exhibiting the highest likelihood value, along with the lowest values for the Kolmogorov-Smirnov  test, Cramer-Von Mises, Anderson Darling, and AIC. For six States under consideration: Abuja, Lagos, Edo, Kebbi, Taraba, and Enugu, the  study establishes the Weibull distribution as the superior choice. Notable log-likelihood and AIC values for each location reinforce its suitability for modeling rainfall data in Nigeria. Specifically, the log-likelihood and AIC values for Abuja are 1910.155 and 3824.309,  respectively, and similar trends are observed across the other locations. Consequently, the study strongly recommends the adoption of  the Weibull distribution as the preferred model for rainfall data modeling in Nigeria. Additionally, it encourages further research into rainfall data modeling employing the Weibull distribution within the context of time series models, both with and without seasonality,  utilizing the well-established Box-Jenkins methodology ","PeriodicalId":213779,"journal":{"name":"Dutse Journal of Pure and Applied Sciences","volume":" 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling Nigeria Rainfall Data Using Exponential Family of Distribution: A Comparative Study\",\"authors\":\"E. S. Oguntade, Timileyin K. Babalola, D. Oladimeji\",\"doi\":\"10.4314/dujopas.v10i2b.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In response to the growing concern about climate change, the study focuses on rainfall, a complex and challenging meteorological  variable to predict compared to temperature. This research introduces an innovative approach to model rainfall data, leveraging  probability distributions from the exponential family. The study utilizes secondary data encompassing monthly rainfall measurements in  millimeters (mm) spanning from 1986 to 2020, obtained from the Nigeria Meteorological Agency (NiMET) – covering a span of thirty-five  years. To identify the most suitable distribution, various model efficiency criteria, including log-likelihood, Kolmogorov-Smirnov test,  Cramer-Von Mises, Anderson Darling, and Akaike Information Criterion (AIC), are employed. The analysis highlights the Weibull  distribution as the most fitting model, exhibiting the highest likelihood value, along with the lowest values for the Kolmogorov-Smirnov  test, Cramer-Von Mises, Anderson Darling, and AIC. For six States under consideration: Abuja, Lagos, Edo, Kebbi, Taraba, and Enugu, the  study establishes the Weibull distribution as the superior choice. Notable log-likelihood and AIC values for each location reinforce its suitability for modeling rainfall data in Nigeria. Specifically, the log-likelihood and AIC values for Abuja are 1910.155 and 3824.309,  respectively, and similar trends are observed across the other locations. Consequently, the study strongly recommends the adoption of  the Weibull distribution as the preferred model for rainfall data modeling in Nigeria. Additionally, it encourages further research into rainfall data modeling employing the Weibull distribution within the context of time series models, both with and without seasonality,  utilizing the well-established Box-Jenkins methodology \",\"PeriodicalId\":213779,\"journal\":{\"name\":\"Dutse Journal of Pure and Applied Sciences\",\"volume\":\" 34\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dutse Journal of Pure and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/dujopas.v10i2b.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dutse Journal of Pure and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/dujopas.v10i2b.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与温度相比,降雨是一个复杂且难以预测的气象变量。本研究利用指数族的概率分布,引入了一种创新的降雨数据建模方法。研究利用了从尼日利亚气象局(NiMET)获得的二级数据,其中包括从 1986 年到 2020 年以毫米(mm)为单位的月降雨量测量值,时间跨度长达 35 年。为了确定最合适的分布,采用了各种模型效率标准,包括对数概率、Kolmogorov-Smirnov 检验、Cramer-Von Mises、Anderson Darling 和 Akaike 信息标准(AIC)。分析结果表明,Weibull 分布是最合适的模型,表现出最高的似然值,而 Kolmogorov-Smirnov 检验、Cramer-Von Mises、Anderson Darling 和 AIC 的值最低。所考虑的六个州对于阿布贾、拉各斯、埃多、凯比、塔拉巴和埃努古这六个州,研究确定 Weibull 分布是较好的选择。每个地点的显著对数似然和 AIC 值都加强了其对尼日利亚降雨数据建模的适用性。具体而言,阿布贾的对数似然值和 AIC 值分别为 1910.155 和 3824.309,其他地点也有类似趋势。因此,研究强烈建议采用 Weibull 分布作为尼日利亚降雨数据建模的首选模型。此外,研究还鼓励进一步研究降雨数据建模,在时间序列模型中采用 Weibull 分布,包括季节性和非季节性,并利用成熟的 Box-Jenkins 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling Nigeria Rainfall Data Using Exponential Family of Distribution: A Comparative Study
In response to the growing concern about climate change, the study focuses on rainfall, a complex and challenging meteorological  variable to predict compared to temperature. This research introduces an innovative approach to model rainfall data, leveraging  probability distributions from the exponential family. The study utilizes secondary data encompassing monthly rainfall measurements in  millimeters (mm) spanning from 1986 to 2020, obtained from the Nigeria Meteorological Agency (NiMET) – covering a span of thirty-five  years. To identify the most suitable distribution, various model efficiency criteria, including log-likelihood, Kolmogorov-Smirnov test,  Cramer-Von Mises, Anderson Darling, and Akaike Information Criterion (AIC), are employed. The analysis highlights the Weibull  distribution as the most fitting model, exhibiting the highest likelihood value, along with the lowest values for the Kolmogorov-Smirnov  test, Cramer-Von Mises, Anderson Darling, and AIC. For six States under consideration: Abuja, Lagos, Edo, Kebbi, Taraba, and Enugu, the  study establishes the Weibull distribution as the superior choice. Notable log-likelihood and AIC values for each location reinforce its suitability for modeling rainfall data in Nigeria. Specifically, the log-likelihood and AIC values for Abuja are 1910.155 and 3824.309,  respectively, and similar trends are observed across the other locations. Consequently, the study strongly recommends the adoption of  the Weibull distribution as the preferred model for rainfall data modeling in Nigeria. Additionally, it encourages further research into rainfall data modeling employing the Weibull distribution within the context of time series models, both with and without seasonality,  utilizing the well-established Box-Jenkins methodology 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信