A. Manco, Matteo Giaccone, T. Zenone, A. Onofri, Francesco Tei, M. Farneselli, Mara Gabbrielli, Marina Allegrezza, A. Perego, Vincenzo Magliulo, L. Vitale
{"title":"种植系统的一氧化二氮排放量和提高氮利用效率的现行战略概览","authors":"A. Manco, Matteo Giaccone, T. Zenone, A. Onofri, Francesco Tei, M. Farneselli, Mara Gabbrielli, Marina Allegrezza, A. Perego, Vincenzo Magliulo, L. Vitale","doi":"10.3390/horticulturae10070754","DOIUrl":null,"url":null,"abstract":"Arable soils significantly contribute to atmosphere pollution through N2O emissions due to the massive use of N-based fertilizers and soil managements. N2O formation in the soil occurs mainly through nitrification and denitrification processes, which are influenced by soil moisture, temperature, oxygen concentration, pH, and the amount of available organic carbon and nitrogen. This review synthetically presents the mechanisms of N2O formation and emission in arable land and some of the current strategies to improve crop nutrient use efficiency. Biological nitrification inhibitor-based agronomic strategies are also presented as future prospects for the sustainable management of crops, which is missing in most of the reviews.","PeriodicalId":13034,"journal":{"name":"Horticulturae","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Overview of N2O Emissions from Cropping Systems and Current Strategies to Improve Nitrogen Use Efficiency\",\"authors\":\"A. Manco, Matteo Giaccone, T. Zenone, A. Onofri, Francesco Tei, M. Farneselli, Mara Gabbrielli, Marina Allegrezza, A. Perego, Vincenzo Magliulo, L. Vitale\",\"doi\":\"10.3390/horticulturae10070754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Arable soils significantly contribute to atmosphere pollution through N2O emissions due to the massive use of N-based fertilizers and soil managements. N2O formation in the soil occurs mainly through nitrification and denitrification processes, which are influenced by soil moisture, temperature, oxygen concentration, pH, and the amount of available organic carbon and nitrogen. This review synthetically presents the mechanisms of N2O formation and emission in arable land and some of the current strategies to improve crop nutrient use efficiency. Biological nitrification inhibitor-based agronomic strategies are also presented as future prospects for the sustainable management of crops, which is missing in most of the reviews.\",\"PeriodicalId\":13034,\"journal\":{\"name\":\"Horticulturae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulturae\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/horticulturae10070754\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/horticulturae10070754","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
An Overview of N2O Emissions from Cropping Systems and Current Strategies to Improve Nitrogen Use Efficiency
Arable soils significantly contribute to atmosphere pollution through N2O emissions due to the massive use of N-based fertilizers and soil managements. N2O formation in the soil occurs mainly through nitrification and denitrification processes, which are influenced by soil moisture, temperature, oxygen concentration, pH, and the amount of available organic carbon and nitrogen. This review synthetically presents the mechanisms of N2O formation and emission in arable land and some of the current strategies to improve crop nutrient use efficiency. Biological nitrification inhibitor-based agronomic strategies are also presented as future prospects for the sustainable management of crops, which is missing in most of the reviews.