用于金融科技公司信用评分和风险管理的机器学习和人工智能方法

IF 0.6 Q4 BUSINESS
Jewel Kumar Roy, László Vasa
{"title":"用于金融科技公司信用评分和风险管理的机器学习和人工智能方法","authors":"Jewel Kumar Roy, László Vasa","doi":"10.4018/ijban.347504","DOIUrl":null,"url":null,"abstract":"The ever-changing landscape of financial technology has undergone significant changes owing to advancements in machine learning, artificial intelligence, blockchains, and digitalization. These changes have had a profound impact on the provision of financial services, specifically, credit scoring and lending. This study examines the intersection of financial technology, artificial intelligence, machine learning, blockchain, and digitalization in the context of credit services with a focus on credit scoring and lending. This study addressed three main research questions: The research followed a comprehensive methodology, considering factors such as population, intervention, comparison, outcomes, and setting to ensure that collected data aligns with research objectives. The research questions were structured using the PICOS framework, and the PRISMA model was used for the systematic review and study selection. The publications analysed covered a wide range of datasets and methodologies.","PeriodicalId":42590,"journal":{"name":"International Journal of Business Analytics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning and Artificial Intelligence Method for FinTech Credit Scoring and Risk Management\",\"authors\":\"Jewel Kumar Roy, László Vasa\",\"doi\":\"10.4018/ijban.347504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ever-changing landscape of financial technology has undergone significant changes owing to advancements in machine learning, artificial intelligence, blockchains, and digitalization. These changes have had a profound impact on the provision of financial services, specifically, credit scoring and lending. This study examines the intersection of financial technology, artificial intelligence, machine learning, blockchain, and digitalization in the context of credit services with a focus on credit scoring and lending. This study addressed three main research questions: The research followed a comprehensive methodology, considering factors such as population, intervention, comparison, outcomes, and setting to ensure that collected data aligns with research objectives. The research questions were structured using the PICOS framework, and the PRISMA model was used for the systematic review and study selection. The publications analysed covered a wide range of datasets and methodologies.\",\"PeriodicalId\":42590,\"journal\":{\"name\":\"International Journal of Business Analytics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Business Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijban.347504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Business Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijban.347504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

摘要

由于机器学习、人工智能、区块链和数字化的进步,金融技术领域日新月异的格局发生了重大变化。这些变化对金融服务的提供,特别是信用评分和借贷产生了深远影响。本研究探讨了信贷服务中金融技术、人工智能、机器学习、区块链和数字化的交叉点,重点关注信用评分和借贷。本研究探讨了三个主要研究问题:研究采用综合方法,考虑了人口、干预、比较、结果和环境等因素,以确保收集的数据与研究目标相一致。研究问题的结构采用了 PICOS 框架,系统回顾和研究选择采用了 PRISMA 模型。所分析的出版物涵盖了各种数据集和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning and Artificial Intelligence Method for FinTech Credit Scoring and Risk Management
The ever-changing landscape of financial technology has undergone significant changes owing to advancements in machine learning, artificial intelligence, blockchains, and digitalization. These changes have had a profound impact on the provision of financial services, specifically, credit scoring and lending. This study examines the intersection of financial technology, artificial intelligence, machine learning, blockchain, and digitalization in the context of credit services with a focus on credit scoring and lending. This study addressed three main research questions: The research followed a comprehensive methodology, considering factors such as population, intervention, comparison, outcomes, and setting to ensure that collected data aligns with research objectives. The research questions were structured using the PICOS framework, and the PRISMA model was used for the systematic review and study selection. The publications analysed covered a wide range of datasets and methodologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
27.30%
发文量
35
期刊介绍: The main objective of the International Journal of Business Analytics (IJBAN) is to advance the next frontier of decision sciences and provide an international forum for practitioners and researchers in business and governmental organizations—as well as information technology professionals, software developers, and vendors—to exchange, share, and present useful and innovative ideas and work. The journal encourages exploration of different models, methods, processes, and principles in profitable and actionable manners.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信