{"title":"对有害物种具有强阿利效应的霍林-II趋同系统的全球动力学研究","authors":"Demou Luo, Yizhi Qiu","doi":"10.1142/s0218127424501153","DOIUrl":null,"url":null,"abstract":"In this study, we discuss the global dynamics of the Holling-II amensalism model for a strong Allee effect of harmful species. We discuss the existence and stabilization of the extinction equilibria, exclusion equilibria, coexistence equilibria, and infinite singularities by analyzing the presence and stabilization of the system characteristics in terms of the possibilities and correspondences in the model when the death rate of the injured species is used as a threshold value. Also, we find that the two equilibrium points in the first quadrant are effective in proving that the model does not have globally stabilizing features and obtain two critical conditions and their corresponding global phase diagrams. Finally, we explore the weak Allee effect of the victim species, and using the analysis from numerical simulations, we recapitulate the analysis and dynamics of the model in equilibrium.","PeriodicalId":506426,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Dynamics of a Holling-II Amensalism System with a Strong Allee Effect on the Harmful Species\",\"authors\":\"Demou Luo, Yizhi Qiu\",\"doi\":\"10.1142/s0218127424501153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we discuss the global dynamics of the Holling-II amensalism model for a strong Allee effect of harmful species. We discuss the existence and stabilization of the extinction equilibria, exclusion equilibria, coexistence equilibria, and infinite singularities by analyzing the presence and stabilization of the system characteristics in terms of the possibilities and correspondences in the model when the death rate of the injured species is used as a threshold value. Also, we find that the two equilibrium points in the first quadrant are effective in proving that the model does not have globally stabilizing features and obtain two critical conditions and their corresponding global phase diagrams. Finally, we explore the weak Allee effect of the victim species, and using the analysis from numerical simulations, we recapitulate the analysis and dynamics of the model in equilibrium.\",\"PeriodicalId\":506426,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424501153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127424501153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Global Dynamics of a Holling-II Amensalism System with a Strong Allee Effect on the Harmful Species
In this study, we discuss the global dynamics of the Holling-II amensalism model for a strong Allee effect of harmful species. We discuss the existence and stabilization of the extinction equilibria, exclusion equilibria, coexistence equilibria, and infinite singularities by analyzing the presence and stabilization of the system characteristics in terms of the possibilities and correspondences in the model when the death rate of the injured species is used as a threshold value. Also, we find that the two equilibrium points in the first quadrant are effective in proving that the model does not have globally stabilizing features and obtain two critical conditions and their corresponding global phase diagrams. Finally, we explore the weak Allee effect of the victim species, and using the analysis from numerical simulations, we recapitulate the analysis and dynamics of the model in equilibrium.