对有害物种具有强阿利效应的霍林-II趋同系统的全球动力学研究

Demou Luo, Yizhi Qiu
{"title":"对有害物种具有强阿利效应的霍林-II趋同系统的全球动力学研究","authors":"Demou Luo, Yizhi Qiu","doi":"10.1142/s0218127424501153","DOIUrl":null,"url":null,"abstract":"In this study, we discuss the global dynamics of the Holling-II amensalism model for a strong Allee effect of harmful species. We discuss the existence and stabilization of the extinction equilibria, exclusion equilibria, coexistence equilibria, and infinite singularities by analyzing the presence and stabilization of the system characteristics in terms of the possibilities and correspondences in the model when the death rate of the injured species is used as a threshold value. Also, we find that the two equilibrium points in the first quadrant are effective in proving that the model does not have globally stabilizing features and obtain two critical conditions and their corresponding global phase diagrams. Finally, we explore the weak Allee effect of the victim species, and using the analysis from numerical simulations, we recapitulate the analysis and dynamics of the model in equilibrium.","PeriodicalId":506426,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":" 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Dynamics of a Holling-II Amensalism System with a Strong Allee Effect on the Harmful Species\",\"authors\":\"Demou Luo, Yizhi Qiu\",\"doi\":\"10.1142/s0218127424501153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we discuss the global dynamics of the Holling-II amensalism model for a strong Allee effect of harmful species. We discuss the existence and stabilization of the extinction equilibria, exclusion equilibria, coexistence equilibria, and infinite singularities by analyzing the presence and stabilization of the system characteristics in terms of the possibilities and correspondences in the model when the death rate of the injured species is used as a threshold value. Also, we find that the two equilibrium points in the first quadrant are effective in proving that the model does not have globally stabilizing features and obtain two critical conditions and their corresponding global phase diagrams. Finally, we explore the weak Allee effect of the victim species, and using the analysis from numerical simulations, we recapitulate the analysis and dynamics of the model in equilibrium.\",\"PeriodicalId\":506426,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\" 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424501153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127424501153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们讨论了有害物种强阿利效应下霍林-II补偿模型的全局动力学。我们通过分析以受害物种死亡率为临界值时,模型中系统特征的可能性和对应性,讨论了灭绝均衡、排斥均衡、共存均衡和无限奇点的存在和稳定。同时,我们发现第一象限的两个平衡点能有效证明模型不具有全局稳定特征,并得到两个临界条件及其对应的全局相图。最后,我们探讨了受害物种的弱阿利效应,并利用数值模拟分析,重述了模型在平衡状态下的分析和动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Dynamics of a Holling-II Amensalism System with a Strong Allee Effect on the Harmful Species
In this study, we discuss the global dynamics of the Holling-II amensalism model for a strong Allee effect of harmful species. We discuss the existence and stabilization of the extinction equilibria, exclusion equilibria, coexistence equilibria, and infinite singularities by analyzing the presence and stabilization of the system characteristics in terms of the possibilities and correspondences in the model when the death rate of the injured species is used as a threshold value. Also, we find that the two equilibrium points in the first quadrant are effective in proving that the model does not have globally stabilizing features and obtain two critical conditions and their corresponding global phase diagrams. Finally, we explore the weak Allee effect of the victim species, and using the analysis from numerical simulations, we recapitulate the analysis and dynamics of the model in equilibrium.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信