涉及雅各布斯塔尔数和雅各布斯塔尔卢卡斯数的无数确定性同式

Q4 Mathematics
T.Ragunathan, Dr. Shweta Choudhary, G. V. Narayanan, S. Jagadeesh
{"title":"涉及雅各布斯塔尔数和雅各布斯塔尔卢卡斯数的无数确定性同式","authors":"T.Ragunathan, Dr. Shweta Choudhary, G. V. Narayanan, S. Jagadeesh","doi":"10.52783/cana.v31.1037","DOIUrl":null,"url":null,"abstract":"Determinants have played an important role in many areas of mathematics. As an example, they are extremely useful in the research and resolution of linear equation and system problems. The study of determinants can be approached from several distinct angles. Throughout the course of this inquiry, we discover a large number of determinant identities involving Jacobsthal and Lucas numbers.","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerous Determinants Identities Involving Jacobsthal and Jacobsthal Lucas Numbers\",\"authors\":\"T.Ragunathan, Dr. Shweta Choudhary, G. V. Narayanan, S. Jagadeesh\",\"doi\":\"10.52783/cana.v31.1037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determinants have played an important role in many areas of mathematics. As an example, they are extremely useful in the research and resolution of linear equation and system problems. The study of determinants can be approached from several distinct angles. Throughout the course of this inquiry, we discover a large number of determinant identities involving Jacobsthal and Lucas numbers.\",\"PeriodicalId\":40036,\"journal\":{\"name\":\"Communications on Applied Nonlinear Analysis\",\"volume\":\" 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Applied Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52783/cana.v31.1037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.1037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

确定子在数学的许多领域都发挥着重要作用。例如,行列式在研究和解决线性方程和系统问题时非常有用。行列式的研究可以从几个不同的角度进行。在整个探究过程中,我们会发现大量涉及雅各布斯塔尔数和卢卡斯数的行列式等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerous Determinants Identities Involving Jacobsthal and Jacobsthal Lucas Numbers
Determinants have played an important role in many areas of mathematics. As an example, they are extremely useful in the research and resolution of linear equation and system problems. The study of determinants can be approached from several distinct angles. Throughout the course of this inquiry, we discover a large number of determinant identities involving Jacobsthal and Lucas numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信