特殊函数积的分式微积分

Q4 Mathematics
Karuna Laddha, Deepak Kumar Kabra, Seema Kabra
{"title":"特殊函数积的分式微积分","authors":"Karuna Laddha, Deepak Kumar Kabra, Seema Kabra","doi":"10.52783/cana.v31.1054","DOIUrl":null,"url":null,"abstract":"Introduction: In this paper, we aim to establish a closed form for the Pathway fractional integral operator and Marichev-Saigo-Maeda fractional integral and differential operators involving the product of  Special G function and Generalized Mittag – Leffler function. The obtained results are evaluated in terms of generalized Wright hyper geometric function. ","PeriodicalId":40036,"journal":{"name":"Communications on Applied Nonlinear Analysis","volume":" 94","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fractional Calculus of Product of Special Functions\",\"authors\":\"Karuna Laddha, Deepak Kumar Kabra, Seema Kabra\",\"doi\":\"10.52783/cana.v31.1054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Introduction: In this paper, we aim to establish a closed form for the Pathway fractional integral operator and Marichev-Saigo-Maeda fractional integral and differential operators involving the product of  Special G function and Generalized Mittag – Leffler function. The obtained results are evaluated in terms of generalized Wright hyper geometric function. \",\"PeriodicalId\":40036,\"journal\":{\"name\":\"Communications on Applied Nonlinear Analysis\",\"volume\":\" 94\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Applied Nonlinear Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52783/cana.v31.1054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Applied Nonlinear Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52783/cana.v31.1054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

引言本文旨在为 Pathway 分数积分算子和 Marichev-Saigo-Maeda 分数积分算子以及涉及特殊 G 函数和广义 Mittag - Leffler 函数乘积的微分算子建立封闭形式。所获得的结果用广义赖特超几何函数进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Fractional Calculus of Product of Special Functions
Introduction: In this paper, we aim to establish a closed form for the Pathway fractional integral operator and Marichev-Saigo-Maeda fractional integral and differential operators involving the product of  Special G function and Generalized Mittag – Leffler function. The obtained results are evaluated in terms of generalized Wright hyper geometric function. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信