使用量化方法对边缘计算的收缩阵列加速器进行能量和精度评估

Alejandra Sanchez-Flores, Jordi Fornt, Lluc Alvarez, Bartomeu Alorda-Ladaria
{"title":"使用量化方法对边缘计算的收缩阵列加速器进行能量和精度评估","authors":"Alejandra Sanchez-Flores, Jordi Fornt, Lluc Alvarez, Bartomeu Alorda-Ladaria","doi":"10.3390/electronics13142822","DOIUrl":null,"url":null,"abstract":"This paper focuses on the implementation of a neural network accelerator optimized for speed and energy efficiency, for use in embedded machine learning. Specifically, we explore power reduction at the hardware level through systolic array and low-precision data systems, including quantized approaches. We present a comprehensive analysis comparing a full precision (FP16) accelerator with a quantized (INT16) version on an FPGA. We upgraded the FP16 modules to handle INT16 values, employing data shifts to enhance value density while maintaining accuracy. Through single convolution experiments, we assess the energy consumption and error minimization. The paper’s structure includes a detailed description of the FP16 accelerator, the transition to quantization, mathematical and implementation insights, instrumentation for power measurement, and a comparative analysis of power consumption and convolution error. Our results attempt to identify a pattern in 16-bit quantization to achieve significant power savings with minimal loss of accuracy.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":" 95","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy and Precision Evaluation of a Systolic Array Accelerator Using a Quantization Approach for Edge Computing\",\"authors\":\"Alejandra Sanchez-Flores, Jordi Fornt, Lluc Alvarez, Bartomeu Alorda-Ladaria\",\"doi\":\"10.3390/electronics13142822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the implementation of a neural network accelerator optimized for speed and energy efficiency, for use in embedded machine learning. Specifically, we explore power reduction at the hardware level through systolic array and low-precision data systems, including quantized approaches. We present a comprehensive analysis comparing a full precision (FP16) accelerator with a quantized (INT16) version on an FPGA. We upgraded the FP16 modules to handle INT16 values, employing data shifts to enhance value density while maintaining accuracy. Through single convolution experiments, we assess the energy consumption and error minimization. The paper’s structure includes a detailed description of the FP16 accelerator, the transition to quantization, mathematical and implementation insights, instrumentation for power measurement, and a comparative analysis of power consumption and convolution error. Our results attempt to identify a pattern in 16-bit quantization to achieve significant power savings with minimal loss of accuracy.\",\"PeriodicalId\":504598,\"journal\":{\"name\":\"Electronics\",\"volume\":\" 95\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13142822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13142822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的重点是实施一种神经网络加速器,优化速度和能效,用于嵌入式机器学习。具体而言,我们探讨了如何通过收缩阵列和低精度数据系统(包括量化方法)在硬件层面降低功耗。我们对 FPGA 上的全精度(FP16)加速器和量化(INT16)版本进行了全面分析比较。我们升级了 FP16 模块以处理 INT16 值,采用数据移位来提高值密度,同时保持精度。通过单卷积实验,我们对能耗和误差最小化进行了评估。本文的结构包括 FP16 加速器的详细说明、向量化的过渡、数学和实现方面的见解、功耗测量仪器以及功耗和卷积误差的比较分析。我们的研究结果试图找出 16 位量化的模式,以实现显著的功耗节省和最小的精度损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy and Precision Evaluation of a Systolic Array Accelerator Using a Quantization Approach for Edge Computing
This paper focuses on the implementation of a neural network accelerator optimized for speed and energy efficiency, for use in embedded machine learning. Specifically, we explore power reduction at the hardware level through systolic array and low-precision data systems, including quantized approaches. We present a comprehensive analysis comparing a full precision (FP16) accelerator with a quantized (INT16) version on an FPGA. We upgraded the FP16 modules to handle INT16 values, employing data shifts to enhance value density while maintaining accuracy. Through single convolution experiments, we assess the energy consumption and error minimization. The paper’s structure includes a detailed description of the FP16 accelerator, the transition to quantization, mathematical and implementation insights, instrumentation for power measurement, and a comparative analysis of power consumption and convolution error. Our results attempt to identify a pattern in 16-bit quantization to achieve significant power savings with minimal loss of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信