利用光变色效应和毛细管效应的液体光学记忆器

Dingchen Wang, Anran Yuan, Shilei Dai, Xiao Tang, Kunbin Huang, Songrui Wei, Han Zhang, Zhongrui Wang
{"title":"利用光变色效应和毛细管效应的液体光学记忆器","authors":"Dingchen Wang, Anran Yuan, Shilei Dai, Xiao Tang, Kunbin Huang, Songrui Wei, Han Zhang, Zhongrui Wang","doi":"10.1088/2634-4386/ad5fb2","DOIUrl":null,"url":null,"abstract":"\n In the era of the Internet of Things, photonic neuromorphic computing presents a promising method for real-time, local processing of vast quantities of data. However, the rigidity of materials used in such devices can considerably impact performance and longevity when subjected to mechanical deformation. In this study, we introduce a liquid optical memristor (LOM) based on an organic-inorganic hybrid in a liquid state. This novel approach offers programmable optical properties and significant mechanical flexibility thanks to the robust photochromic and capillary effects. We have developed a LOM with a 24 dB cm−1 modulation depth and over 3-bit nonvolatile memory states. By controlling the droplet morphology to mimic a synapse-like shape, the LOM can withstand strains over 400% and endure misalignment and bending. Furthermore, our findings substantiate the application of LOM for photonic neuromorphic computing systems, yielding 100% accuracy in pattern recognition. The easily-integratable LOM paves the way for the creation of flexible and wearable photonic neuromorphic computing systems.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":" 48","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A liquid optical memristor using photochromic effect and capillary effect\",\"authors\":\"Dingchen Wang, Anran Yuan, Shilei Dai, Xiao Tang, Kunbin Huang, Songrui Wei, Han Zhang, Zhongrui Wang\",\"doi\":\"10.1088/2634-4386/ad5fb2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the era of the Internet of Things, photonic neuromorphic computing presents a promising method for real-time, local processing of vast quantities of data. However, the rigidity of materials used in such devices can considerably impact performance and longevity when subjected to mechanical deformation. In this study, we introduce a liquid optical memristor (LOM) based on an organic-inorganic hybrid in a liquid state. This novel approach offers programmable optical properties and significant mechanical flexibility thanks to the robust photochromic and capillary effects. We have developed a LOM with a 24 dB cm−1 modulation depth and over 3-bit nonvolatile memory states. By controlling the droplet morphology to mimic a synapse-like shape, the LOM can withstand strains over 400% and endure misalignment and bending. Furthermore, our findings substantiate the application of LOM for photonic neuromorphic computing systems, yielding 100% accuracy in pattern recognition. The easily-integratable LOM paves the way for the creation of flexible and wearable photonic neuromorphic computing systems.\",\"PeriodicalId\":198030,\"journal\":{\"name\":\"Neuromorphic Computing and Engineering\",\"volume\":\" 48\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuromorphic Computing and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2634-4386/ad5fb2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/ad5fb2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在物联网时代,光子神经形态计算为实时、本地处理大量数据提供了一种前景广阔的方法。然而,这类设备所用材料的硬度会在机械变形时严重影响性能和寿命。在本研究中,我们介绍了一种基于液态有机-无机混合物的液态光学忆阻器(LOM)。得益于强大的光致变色效应和毛细管效应,这种新方法具有可编程的光学特性和显著的机械灵活性。我们开发的 LOM 具有 24 dB cm-1 的调制深度和超过 3 位的非易失性存储状态。通过控制液滴形态来模仿类似突触的形状,LOM 可以承受超过 400% 的应变,并能承受错位和弯曲。此外,我们的研究结果证实了LOM在光子神经形态计算系统中的应用,其模式识别准确率达到100%。易于集成的LOM为创建灵活、可穿戴的光子神经形态计算系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A liquid optical memristor using photochromic effect and capillary effect
In the era of the Internet of Things, photonic neuromorphic computing presents a promising method for real-time, local processing of vast quantities of data. However, the rigidity of materials used in such devices can considerably impact performance and longevity when subjected to mechanical deformation. In this study, we introduce a liquid optical memristor (LOM) based on an organic-inorganic hybrid in a liquid state. This novel approach offers programmable optical properties and significant mechanical flexibility thanks to the robust photochromic and capillary effects. We have developed a LOM with a 24 dB cm−1 modulation depth and over 3-bit nonvolatile memory states. By controlling the droplet morphology to mimic a synapse-like shape, the LOM can withstand strains over 400% and endure misalignment and bending. Furthermore, our findings substantiate the application of LOM for photonic neuromorphic computing systems, yielding 100% accuracy in pattern recognition. The easily-integratable LOM paves the way for the creation of flexible and wearable photonic neuromorphic computing systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信