{"title":"用于压力容器的碳纤维/环氧树脂 Vitrimer 复合材料:开发可持续材料","authors":"Sudhanshu Nartam, Sandip Budhe, Jinu Paul","doi":"10.4028/p-dzac8g","DOIUrl":null,"url":null,"abstract":"The main aim of the research work is to develop a sustainable vitrimer composite that can be easily recyclable and reusable carbon fibre for secondary applications. Vitrimer materials provide opportunities for recycle thermosets and CFRP composites, however, the retained properties of composite still limit their applications. In this research work, the focus is to investigate material properties of vitamer/carbon fiber composite and the retained properties after recycling of the same. A vitrimer material has been developed using an epoxy (EP) matrix and bio-based curing agent and citric acid (CA), and finally reinforced with carbon fibre. The vitrimer materials were prepared with varying ratios of acid to the epoxy ratio between 0.30 and 0.40 to prepare the best performance vitrimer. Fourier transform infrared (FTIR) spectrometry was conducted in Transmittance mode over a range of wavelengths from 400 to 4000 cm-1. The mechanical testing carried out at room temperature under tensile loading. Results found that the Vitrimer composite could be effectively dissolved in DMF, enabling the recovery of the carbon fibers. The results of the study indicate that the EP/CA vitrimers exhibit thermomechanical properties that are comparable to those of the epoxy vitrimer cured using a petroleum-based curing agent. The most important results that demonstrate the use of EP/CA vitrimers may be a promising alternative to traditional epoxy composites in various applications.","PeriodicalId":507742,"journal":{"name":"Materials Science Forum","volume":" 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Fiber/Epoxy Vitrimer Composite Material for Pressure Vessels: Towards Development of Sustainable Materials\",\"authors\":\"Sudhanshu Nartam, Sandip Budhe, Jinu Paul\",\"doi\":\"10.4028/p-dzac8g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of the research work is to develop a sustainable vitrimer composite that can be easily recyclable and reusable carbon fibre for secondary applications. Vitrimer materials provide opportunities for recycle thermosets and CFRP composites, however, the retained properties of composite still limit their applications. In this research work, the focus is to investigate material properties of vitamer/carbon fiber composite and the retained properties after recycling of the same. A vitrimer material has been developed using an epoxy (EP) matrix and bio-based curing agent and citric acid (CA), and finally reinforced with carbon fibre. The vitrimer materials were prepared with varying ratios of acid to the epoxy ratio between 0.30 and 0.40 to prepare the best performance vitrimer. Fourier transform infrared (FTIR) spectrometry was conducted in Transmittance mode over a range of wavelengths from 400 to 4000 cm-1. The mechanical testing carried out at room temperature under tensile loading. Results found that the Vitrimer composite could be effectively dissolved in DMF, enabling the recovery of the carbon fibers. The results of the study indicate that the EP/CA vitrimers exhibit thermomechanical properties that are comparable to those of the epoxy vitrimer cured using a petroleum-based curing agent. The most important results that demonstrate the use of EP/CA vitrimers may be a promising alternative to traditional epoxy composites in various applications.\",\"PeriodicalId\":507742,\"journal\":{\"name\":\"Materials Science Forum\",\"volume\":\" 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-dzac8g\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-dzac8g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carbon Fiber/Epoxy Vitrimer Composite Material for Pressure Vessels: Towards Development of Sustainable Materials
The main aim of the research work is to develop a sustainable vitrimer composite that can be easily recyclable and reusable carbon fibre for secondary applications. Vitrimer materials provide opportunities for recycle thermosets and CFRP composites, however, the retained properties of composite still limit their applications. In this research work, the focus is to investigate material properties of vitamer/carbon fiber composite and the retained properties after recycling of the same. A vitrimer material has been developed using an epoxy (EP) matrix and bio-based curing agent and citric acid (CA), and finally reinforced with carbon fibre. The vitrimer materials were prepared with varying ratios of acid to the epoxy ratio between 0.30 and 0.40 to prepare the best performance vitrimer. Fourier transform infrared (FTIR) spectrometry was conducted in Transmittance mode over a range of wavelengths from 400 to 4000 cm-1. The mechanical testing carried out at room temperature under tensile loading. Results found that the Vitrimer composite could be effectively dissolved in DMF, enabling the recovery of the carbon fibers. The results of the study indicate that the EP/CA vitrimers exhibit thermomechanical properties that are comparable to those of the epoxy vitrimer cured using a petroleum-based curing agent. The most important results that demonstrate the use of EP/CA vitrimers may be a promising alternative to traditional epoxy composites in various applications.