物联网网络的增强型剖析保证架构

Nut Aroon, Vicky Liu, Luke Kane, Yuefeng Li, A. D. Tesfamicael, Matthew McKague
{"title":"物联网网络的增强型剖析保证架构","authors":"Nut Aroon, Vicky Liu, Luke Kane, Yuefeng Li, A. D. Tesfamicael, Matthew McKague","doi":"10.3390/electronics13142832","DOIUrl":null,"url":null,"abstract":"Attacks launched from IoT networks can cause significant damage to critical network systems and services. IoT networks may contain a large volume of devices. Protecting these devices from being abused to launch traffic amplification attacks is critical. The manufacturer usage description (MUD) architecture uses pre-defined stateless access control rules to allow or block specific network traffic without stateful communication inspection. This can lead to false negative filtering of malicious traffic, as the MUD architecture does not include the monitoring of communication states to determine which connections to allow through. This study presents a novel solution, the enhanced profiling assurance (EPA) architecture. It incorporates both stateless and stateful communication inspection, a unique approach that enhances the detection effectiveness of the MUD architecture. EPA contains layered intrusion detection and prevention systems to monitor stateful and stateless communication. It adopts three-way decision theory with three outcomes: allow, deny, and uncertain. Packets that are marked as uncertain must be continuously monitored to determine access permission. Our analysis, conducted with two network scenarios, demonstrates the superiority of the EPA over the MUD architecture in detecting malicious activities.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Architecture of Enhanced Profiling Assurance for IoT Networks\",\"authors\":\"Nut Aroon, Vicky Liu, Luke Kane, Yuefeng Li, A. D. Tesfamicael, Matthew McKague\",\"doi\":\"10.3390/electronics13142832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Attacks launched from IoT networks can cause significant damage to critical network systems and services. IoT networks may contain a large volume of devices. Protecting these devices from being abused to launch traffic amplification attacks is critical. The manufacturer usage description (MUD) architecture uses pre-defined stateless access control rules to allow or block specific network traffic without stateful communication inspection. This can lead to false negative filtering of malicious traffic, as the MUD architecture does not include the monitoring of communication states to determine which connections to allow through. This study presents a novel solution, the enhanced profiling assurance (EPA) architecture. It incorporates both stateless and stateful communication inspection, a unique approach that enhances the detection effectiveness of the MUD architecture. EPA contains layered intrusion detection and prevention systems to monitor stateful and stateless communication. It adopts three-way decision theory with three outcomes: allow, deny, and uncertain. Packets that are marked as uncertain must be continuously monitored to determine access permission. Our analysis, conducted with two network scenarios, demonstrates the superiority of the EPA over the MUD architecture in detecting malicious activities.\",\"PeriodicalId\":504598,\"journal\":{\"name\":\"Electronics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13142832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13142832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从物联网网络发起的攻击可对关键网络系统和服务造成重大损害。物联网网络可能包含大量设备。保护这些设备不被滥用来发起流量放大攻击至关重要。制造商使用说明(MUD)架构使用预定义的无状态访问控制规则来允许或阻止特定的网络流量,而无需进行有状态的通信检查。这可能导致对恶意流量的错误过滤,因为 MUD 架构不包括对通信状态的监控,以确定允许哪些连接通过。本研究提出了一种新颖的解决方案,即增强型剖析保证(EPA)架构。它结合了无状态和有状态通信检测,这种独特的方法增强了 MUD 架构的检测效果。EPA 包含分层入侵检测和防御系统,用于监控有状态和无状态通信。它采用三向决策理论,有三种结果:允许、拒绝和不确定。被标记为不确定的数据包必须受到持续监控,以确定访问权限。我们利用两个网络场景进行了分析,结果表明 EPA 在检测恶意活动方面优于 MUD 架构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Architecture of Enhanced Profiling Assurance for IoT Networks
Attacks launched from IoT networks can cause significant damage to critical network systems and services. IoT networks may contain a large volume of devices. Protecting these devices from being abused to launch traffic amplification attacks is critical. The manufacturer usage description (MUD) architecture uses pre-defined stateless access control rules to allow or block specific network traffic without stateful communication inspection. This can lead to false negative filtering of malicious traffic, as the MUD architecture does not include the monitoring of communication states to determine which connections to allow through. This study presents a novel solution, the enhanced profiling assurance (EPA) architecture. It incorporates both stateless and stateful communication inspection, a unique approach that enhances the detection effectiveness of the MUD architecture. EPA contains layered intrusion detection and prevention systems to monitor stateful and stateless communication. It adopts three-way decision theory with three outcomes: allow, deny, and uncertain. Packets that are marked as uncertain must be continuously monitored to determine access permission. Our analysis, conducted with two network scenarios, demonstrates the superiority of the EPA over the MUD architecture in detecting malicious activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信