{"title":"用于股价预测的深度学习架构","authors":"Tri Andi, W. Andriyani, Bambang Purnomosidi D.P","doi":"10.26798/jiss.v3i1.1343","DOIUrl":null,"url":null,"abstract":"Dalam dunia investasi saham, kemampuan memprediksi pergerakan harga saham secara akurat sangatlah penting. Dua permasalahan utama yang menjadi fokus penelitian ini adalah, bagaimana pemodelan N-BEATS dibandingkan LSTM dan ARIMA pada harga saham Bank BCA, dan bagaimana hasil peramalan model N-BEATS, LSTM, dan ARIMA pada harga saham Bank BCA. Data saham Bank BCA. Untuk menjawab hal tersebut, penelitian ini membahas tentang pengembangan dan evaluasi model peramalan time series N-BEATS. Namun hasil analisis menunjukkan bahwa model ARIMA menunjukkan kinerja yang unggul, dengan pencapaian MAPE sebesar 0,001% pada data menit, 0,006% pada data jam, dan 0,018% pada data hari. Keunggulan ini signifikan dibandingkan model N-BEATS dan LSTM. Oleh karena itu, model ARIMA menunjukkan potensi besar untuk digunakan dalam peramalan deret waktu keuangan, penilaian risiko, dan pemodelan oleh analis keuangan.","PeriodicalId":156799,"journal":{"name":"Journal of Intelligent Software Systems","volume":" 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Architecture for Stock Price Prediction\",\"authors\":\"Tri Andi, W. Andriyani, Bambang Purnomosidi D.P\",\"doi\":\"10.26798/jiss.v3i1.1343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dalam dunia investasi saham, kemampuan memprediksi pergerakan harga saham secara akurat sangatlah penting. Dua permasalahan utama yang menjadi fokus penelitian ini adalah, bagaimana pemodelan N-BEATS dibandingkan LSTM dan ARIMA pada harga saham Bank BCA, dan bagaimana hasil peramalan model N-BEATS, LSTM, dan ARIMA pada harga saham Bank BCA. Data saham Bank BCA. Untuk menjawab hal tersebut, penelitian ini membahas tentang pengembangan dan evaluasi model peramalan time series N-BEATS. Namun hasil analisis menunjukkan bahwa model ARIMA menunjukkan kinerja yang unggul, dengan pencapaian MAPE sebesar 0,001% pada data menit, 0,006% pada data jam, dan 0,018% pada data hari. Keunggulan ini signifikan dibandingkan model N-BEATS dan LSTM. Oleh karena itu, model ARIMA menunjukkan potensi besar untuk digunakan dalam peramalan deret waktu keuangan, penilaian risiko, dan pemodelan oleh analis keuangan.\",\"PeriodicalId\":156799,\"journal\":{\"name\":\"Journal of Intelligent Software Systems\",\"volume\":\" 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Software Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26798/jiss.v3i1.1343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Software Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26798/jiss.v3i1.1343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning Architecture for Stock Price Prediction
Dalam dunia investasi saham, kemampuan memprediksi pergerakan harga saham secara akurat sangatlah penting. Dua permasalahan utama yang menjadi fokus penelitian ini adalah, bagaimana pemodelan N-BEATS dibandingkan LSTM dan ARIMA pada harga saham Bank BCA, dan bagaimana hasil peramalan model N-BEATS, LSTM, dan ARIMA pada harga saham Bank BCA. Data saham Bank BCA. Untuk menjawab hal tersebut, penelitian ini membahas tentang pengembangan dan evaluasi model peramalan time series N-BEATS. Namun hasil analisis menunjukkan bahwa model ARIMA menunjukkan kinerja yang unggul, dengan pencapaian MAPE sebesar 0,001% pada data menit, 0,006% pada data jam, dan 0,018% pada data hari. Keunggulan ini signifikan dibandingkan model N-BEATS dan LSTM. Oleh karena itu, model ARIMA menunjukkan potensi besar untuk digunakan dalam peramalan deret waktu keuangan, penilaian risiko, dan pemodelan oleh analis keuangan.