Chuxin Cao, Jianhong Huang, Man Wu, Zhizhe Lin, Yan Sun
{"title":"基于卷积-残差门控递归神经网络和双层注意力的多变量时间序列预测方法","authors":"Chuxin Cao, Jianhong Huang, Man Wu, Zhizhe Lin, Yan Sun","doi":"10.3390/electronics13142834","DOIUrl":null,"url":null,"abstract":"In multivariate and multistep time series prediction research, we often face the problems of insufficient spatial feature extraction and insufficient time-dependent mining of historical series data, which also brings great challenges to multivariate time series analysis and prediction. Inspired by the attention mechanism and residual module, this study proposes a multivariate time series prediction method based on a convolutional-residual gated recurrent hybrid model (CNN-DA-RGRU) with a two-layer attention mechanism to solve the multivariate time series prediction problem in these two stages. Specifically, the convolution module of the proposed model is used to extract the relational features among the sequences, and the two-layer attention mechanism can pay more attention to the relevant variables and give them higher weights to eliminate the irrelevant features, while the residual gated loop module is used to extract the time-varying features of the sequences, in which the residual block is used to achieve the direct connectivity to enhance the expressive power of the model, to solve the gradient explosion and vanishing scenarios, and to facilitate gradient propagation. Experiments were conducted on two public datasets using the proposed model to determine the model hyperparameters, and ablation experiments were conducted to verify the effectiveness of the model; by comparing it with several models, the proposed model was found to achieve good results in multivariate time series-forecasting tasks.","PeriodicalId":504598,"journal":{"name":"Electronics","volume":" 33","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multivariate Time Series Prediction Method Based on Convolution-Residual Gated Recurrent Neural Network and Double-Layer Attention\",\"authors\":\"Chuxin Cao, Jianhong Huang, Man Wu, Zhizhe Lin, Yan Sun\",\"doi\":\"10.3390/electronics13142834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multivariate and multistep time series prediction research, we often face the problems of insufficient spatial feature extraction and insufficient time-dependent mining of historical series data, which also brings great challenges to multivariate time series analysis and prediction. Inspired by the attention mechanism and residual module, this study proposes a multivariate time series prediction method based on a convolutional-residual gated recurrent hybrid model (CNN-DA-RGRU) with a two-layer attention mechanism to solve the multivariate time series prediction problem in these two stages. Specifically, the convolution module of the proposed model is used to extract the relational features among the sequences, and the two-layer attention mechanism can pay more attention to the relevant variables and give them higher weights to eliminate the irrelevant features, while the residual gated loop module is used to extract the time-varying features of the sequences, in which the residual block is used to achieve the direct connectivity to enhance the expressive power of the model, to solve the gradient explosion and vanishing scenarios, and to facilitate gradient propagation. Experiments were conducted on two public datasets using the proposed model to determine the model hyperparameters, and ablation experiments were conducted to verify the effectiveness of the model; by comparing it with several models, the proposed model was found to achieve good results in multivariate time series-forecasting tasks.\",\"PeriodicalId\":504598,\"journal\":{\"name\":\"Electronics\",\"volume\":\" 33\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/electronics13142834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/electronics13142834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multivariate Time Series Prediction Method Based on Convolution-Residual Gated Recurrent Neural Network and Double-Layer Attention
In multivariate and multistep time series prediction research, we often face the problems of insufficient spatial feature extraction and insufficient time-dependent mining of historical series data, which also brings great challenges to multivariate time series analysis and prediction. Inspired by the attention mechanism and residual module, this study proposes a multivariate time series prediction method based on a convolutional-residual gated recurrent hybrid model (CNN-DA-RGRU) with a two-layer attention mechanism to solve the multivariate time series prediction problem in these two stages. Specifically, the convolution module of the proposed model is used to extract the relational features among the sequences, and the two-layer attention mechanism can pay more attention to the relevant variables and give them higher weights to eliminate the irrelevant features, while the residual gated loop module is used to extract the time-varying features of the sequences, in which the residual block is used to achieve the direct connectivity to enhance the expressive power of the model, to solve the gradient explosion and vanishing scenarios, and to facilitate gradient propagation. Experiments were conducted on two public datasets using the proposed model to determine the model hyperparameters, and ablation experiments were conducted to verify the effectiveness of the model; by comparing it with several models, the proposed model was found to achieve good results in multivariate time series-forecasting tasks.