利用深度学习进行图像伪造检测

Prof. D. D. Pukale, Prof. V. D. Kulkarni, Julekha Bagwan, Pranali Jagadale, Sanjivani More, Renuka Sarmokdam
{"title":"利用深度学习进行图像伪造检测","authors":"Prof. D. D. Pukale, Prof. V. D. Kulkarni, Julekha Bagwan, Pranali Jagadale, Sanjivani More, Renuka Sarmokdam","doi":"10.47392/irjaem.2024.0327","DOIUrl":null,"url":null,"abstract":"Image forgery is a big problem in digital media, making it important to have strong detection methods to fight misinformation and keep trust in visual content. In this project, we introduce an advanced image forgery detection system using VGG16, a powerful convolutional neural network, and Error Level Analysis (ELA) algorithms. Our goal is to create an efficient and accurate system that can identify real images from fake ones, especially focusing on detecting splicing and copy-move forgeries. By examining pixel intensities and patterns, our system can accurately find tampered areas, improving the integrity and trustworthiness of digital images. We use a diverse dataset of real and fake images from different sources to train and test the VGG16-ELA model. We aim to find the percentage of forgery, highlighting the forged areas and generating the mask of forged area. Through this effort, we aim to increase trust in visual content in fields like forensics, journalism, and social media, helping to ensure the reliability of digital information.","PeriodicalId":517878,"journal":{"name":"International Research Journal on Advanced Engineering and Management (IRJAEM)","volume":" 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Forgery Detection Using Deep Learning\",\"authors\":\"Prof. D. D. Pukale, Prof. V. D. Kulkarni, Julekha Bagwan, Pranali Jagadale, Sanjivani More, Renuka Sarmokdam\",\"doi\":\"10.47392/irjaem.2024.0327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image forgery is a big problem in digital media, making it important to have strong detection methods to fight misinformation and keep trust in visual content. In this project, we introduce an advanced image forgery detection system using VGG16, a powerful convolutional neural network, and Error Level Analysis (ELA) algorithms. Our goal is to create an efficient and accurate system that can identify real images from fake ones, especially focusing on detecting splicing and copy-move forgeries. By examining pixel intensities and patterns, our system can accurately find tampered areas, improving the integrity and trustworthiness of digital images. We use a diverse dataset of real and fake images from different sources to train and test the VGG16-ELA model. We aim to find the percentage of forgery, highlighting the forged areas and generating the mask of forged area. Through this effort, we aim to increase trust in visual content in fields like forensics, journalism, and social media, helping to ensure the reliability of digital information.\",\"PeriodicalId\":517878,\"journal\":{\"name\":\"International Research Journal on Advanced Engineering and Management (IRJAEM)\",\"volume\":\" 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Research Journal on Advanced Engineering and Management (IRJAEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47392/irjaem.2024.0327\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal on Advanced Engineering and Management (IRJAEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47392/irjaem.2024.0327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像造假是数字媒体中的一个大问题,因此必须有强大的检测方法来打击错误信息,保持人们对视觉内容的信任。在本项目中,我们利用强大的卷积神经网络 VGG16 和误差水平分析 (ELA) 算法,介绍了一种先进的图像伪造检测系统。我们的目标是创建一个高效、准确的系统,能够识别真假图像,尤其是重点检测拼接和复制移动的伪造图像。通过检查像素强度和模式,我们的系统可以准确找到被篡改的区域,从而提高数字图像的完整性和可信度。我们使用不同来源的真假图像数据集来训练和测试 VGG16-ELA 模型。我们的目标是找出伪造的百分比,突出伪造区域并生成伪造区域的掩码。通过这项工作,我们旨在提高取证、新闻和社交媒体等领域对视觉内容的信任度,帮助确保数字信息的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image Forgery Detection Using Deep Learning
Image forgery is a big problem in digital media, making it important to have strong detection methods to fight misinformation and keep trust in visual content. In this project, we introduce an advanced image forgery detection system using VGG16, a powerful convolutional neural network, and Error Level Analysis (ELA) algorithms. Our goal is to create an efficient and accurate system that can identify real images from fake ones, especially focusing on detecting splicing and copy-move forgeries. By examining pixel intensities and patterns, our system can accurately find tampered areas, improving the integrity and trustworthiness of digital images. We use a diverse dataset of real and fake images from different sources to train and test the VGG16-ELA model. We aim to find the percentage of forgery, highlighting the forged areas and generating the mask of forged area. Through this effort, we aim to increase trust in visual content in fields like forensics, journalism, and social media, helping to ensure the reliability of digital information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信