GL2 埃默顿-吉堆栈中的不规则位点

Rebecca Bellovin, Neelima Borade, Anton Hilado, Kalyani Kansal, Heejong Lee, Brandon Levin, David Savitt, Hanneke Wiersema
{"title":"GL2 埃默顿-吉堆栈中的不规则位点","authors":"Rebecca Bellovin, Neelima Borade, Anton Hilado, Kalyani Kansal, Heejong Lee, Brandon Levin, David Savitt, Hanneke Wiersema","doi":"10.1515/crelle-2024-0045","DOIUrl":null,"url":null,"abstract":"\n <jats:p>Let <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>K</m:mi>\n <m:mo>/</m:mo>\n <m:msub>\n <m:mi mathvariant=\"bold\">Q</m:mi>\n <m:mi>p</m:mi>\n </m:msub>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0045_ineq_0001.png\"/>\n <jats:tex-math>K/\\mathbf{Q}_{p}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> be unramified.\nInside the Emerton–Gee stack <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mi mathvariant=\"script\">X</m:mi>\n <m:mn>2</m:mn>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0045_ineq_0002.png\"/>\n <jats:tex-math>\\mathcal{X}_{2}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, one can consider the locus of two-dimensional mod 𝑝 representations of <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>Gal</m:mi>\n <m:mo>⁢</m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mrow>\n <m:mover accent=\"true\">\n <m:mi>K</m:mi>\n <m:mo>̄</m:mo>\n </m:mover>\n <m:mo>/</m:mo>\n <m:mi>K</m:mi>\n </m:mrow>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0045_ineq_0003.png\"/>\n <jats:tex-math>\\mathrm{Gal}(\\overline{K}/K)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> having a crystalline lift with specified Hodge–Tate weights.\nWe study the case where the Hodge–Tate weights are irregular, which is an analogue for Galois representations of the partial weight one condition for Hilbert modular forms.\nWe prove that if the gap between each pair of weights is bounded by 𝑝 (the irregular analogue of a Serre weight), then this locus is irreducible.\nWe also establish various inclusion relations between these loci.</jats:p>","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":" 72","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irregular loci in the Emerton–Gee stack for GL2\",\"authors\":\"Rebecca Bellovin, Neelima Borade, Anton Hilado, Kalyani Kansal, Heejong Lee, Brandon Levin, David Savitt, Hanneke Wiersema\",\"doi\":\"10.1515/crelle-2024-0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>Let <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>K</m:mi>\\n <m:mo>/</m:mo>\\n <m:msub>\\n <m:mi mathvariant=\\\"bold\\\">Q</m:mi>\\n <m:mi>p</m:mi>\\n </m:msub>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0045_ineq_0001.png\\\"/>\\n <jats:tex-math>K/\\\\mathbf{Q}_{p}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> be unramified.\\nInside the Emerton–Gee stack <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msub>\\n <m:mi mathvariant=\\\"script\\\">X</m:mi>\\n <m:mn>2</m:mn>\\n </m:msub>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0045_ineq_0002.png\\\"/>\\n <jats:tex-math>\\\\mathcal{X}_{2}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, one can consider the locus of two-dimensional mod 𝑝 representations of <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>Gal</m:mi>\\n <m:mo>⁢</m:mo>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:mrow>\\n <m:mover accent=\\\"true\\\">\\n <m:mi>K</m:mi>\\n <m:mo>̄</m:mo>\\n </m:mover>\\n <m:mo>/</m:mo>\\n <m:mi>K</m:mi>\\n </m:mrow>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0045_ineq_0003.png\\\"/>\\n <jats:tex-math>\\\\mathrm{Gal}(\\\\overline{K}/K)</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> having a crystalline lift with specified Hodge–Tate weights.\\nWe study the case where the Hodge–Tate weights are irregular, which is an analogue for Galois representations of the partial weight one condition for Hilbert modular forms.\\nWe prove that if the gap between each pair of weights is bounded by 𝑝 (the irregular analogue of a Serre weight), then this locus is irreducible.\\nWe also establish various inclusion relations between these loci.</jats:p>\",\"PeriodicalId\":508691,\"journal\":{\"name\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"volume\":\" 72\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2024-0045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 K / Q p K/\mathbf{Q}_{p} 是无ramified 的。在埃默顿-吉堆栈 X 2 \mathcal{X}_{2} 中,我们可以考虑 Gal ( K ̄ / K ) 的二维模𝑝表示。 我们可以考虑 Gal ( K ̄ / K ) 的二维 mod 𝑝 表示的位置 \我们研究了霍奇-塔特权重不规则的情况,这是希尔伯特模块形式部分权重为一条件在伽罗华表示中的类似。我们证明,如果每对权重之间的间隙以 𝑝 为界(塞尔权重的不规则类似),那么这个位置是不可还原的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irregular loci in the Emerton–Gee stack for GL2
Let K / Q p K/\mathbf{Q}_{p} be unramified. Inside the Emerton–Gee stack X 2 \mathcal{X}_{2} , one can consider the locus of two-dimensional mod 𝑝 representations of Gal ( K ̄ / K ) \mathrm{Gal}(\overline{K}/K) having a crystalline lift with specified Hodge–Tate weights. We study the case where the Hodge–Tate weights are irregular, which is an analogue for Galois representations of the partial weight one condition for Hilbert modular forms. We prove that if the gap between each pair of weights is bounded by 𝑝 (the irregular analogue of a Serre weight), then this locus is irreducible. We also establish various inclusion relations between these loci.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信