Rebecca Bellovin, Neelima Borade, Anton Hilado, Kalyani Kansal, Heejong Lee, Brandon Levin, David Savitt, Hanneke Wiersema
{"title":"GL2 埃默顿-吉堆栈中的不规则位点","authors":"Rebecca Bellovin, Neelima Borade, Anton Hilado, Kalyani Kansal, Heejong Lee, Brandon Levin, David Savitt, Hanneke Wiersema","doi":"10.1515/crelle-2024-0045","DOIUrl":null,"url":null,"abstract":"\n <jats:p>Let <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>K</m:mi>\n <m:mo>/</m:mo>\n <m:msub>\n <m:mi mathvariant=\"bold\">Q</m:mi>\n <m:mi>p</m:mi>\n </m:msub>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0045_ineq_0001.png\"/>\n <jats:tex-math>K/\\mathbf{Q}_{p}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> be unramified.\nInside the Emerton–Gee stack <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:msub>\n <m:mi mathvariant=\"script\">X</m:mi>\n <m:mn>2</m:mn>\n </m:msub>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0045_ineq_0002.png\"/>\n <jats:tex-math>\\mathcal{X}_{2}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, one can consider the locus of two-dimensional mod 𝑝 representations of <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>Gal</m:mi>\n <m:mo></m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mrow>\n <m:mover accent=\"true\">\n <m:mi>K</m:mi>\n <m:mo>̄</m:mo>\n </m:mover>\n <m:mo>/</m:mo>\n <m:mi>K</m:mi>\n </m:mrow>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0045_ineq_0003.png\"/>\n <jats:tex-math>\\mathrm{Gal}(\\overline{K}/K)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> having a crystalline lift with specified Hodge–Tate weights.\nWe study the case where the Hodge–Tate weights are irregular, which is an analogue for Galois representations of the partial weight one condition for Hilbert modular forms.\nWe prove that if the gap between each pair of weights is bounded by 𝑝 (the irregular analogue of a Serre weight), then this locus is irreducible.\nWe also establish various inclusion relations between these loci.</jats:p>","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":" 72","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irregular loci in the Emerton–Gee stack for GL2\",\"authors\":\"Rebecca Bellovin, Neelima Borade, Anton Hilado, Kalyani Kansal, Heejong Lee, Brandon Levin, David Savitt, Hanneke Wiersema\",\"doi\":\"10.1515/crelle-2024-0045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n <jats:p>Let <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>K</m:mi>\\n <m:mo>/</m:mo>\\n <m:msub>\\n <m:mi mathvariant=\\\"bold\\\">Q</m:mi>\\n <m:mi>p</m:mi>\\n </m:msub>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0045_ineq_0001.png\\\"/>\\n <jats:tex-math>K/\\\\mathbf{Q}_{p}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> be unramified.\\nInside the Emerton–Gee stack <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:msub>\\n <m:mi mathvariant=\\\"script\\\">X</m:mi>\\n <m:mn>2</m:mn>\\n </m:msub>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0045_ineq_0002.png\\\"/>\\n <jats:tex-math>\\\\mathcal{X}_{2}</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula>, one can consider the locus of two-dimensional mod 𝑝 representations of <jats:inline-formula>\\n <jats:alternatives>\\n <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\">\\n <m:mrow>\\n <m:mi>Gal</m:mi>\\n <m:mo></m:mo>\\n <m:mrow>\\n <m:mo stretchy=\\\"false\\\">(</m:mo>\\n <m:mrow>\\n <m:mover accent=\\\"true\\\">\\n <m:mi>K</m:mi>\\n <m:mo>̄</m:mo>\\n </m:mover>\\n <m:mo>/</m:mo>\\n <m:mi>K</m:mi>\\n </m:mrow>\\n <m:mo stretchy=\\\"false\\\">)</m:mo>\\n </m:mrow>\\n </m:mrow>\\n </m:math>\\n <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_crelle-2024-0045_ineq_0003.png\\\"/>\\n <jats:tex-math>\\\\mathrm{Gal}(\\\\overline{K}/K)</jats:tex-math>\\n </jats:alternatives>\\n </jats:inline-formula> having a crystalline lift with specified Hodge–Tate weights.\\nWe study the case where the Hodge–Tate weights are irregular, which is an analogue for Galois representations of the partial weight one condition for Hilbert modular forms.\\nWe prove that if the gap between each pair of weights is bounded by 𝑝 (the irregular analogue of a Serre weight), then this locus is irreducible.\\nWe also establish various inclusion relations between these loci.</jats:p>\",\"PeriodicalId\":508691,\"journal\":{\"name\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"volume\":\" 72\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal für die reine und angewandte Mathematik (Crelles Journal)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/crelle-2024-0045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
让 K / Q p K/\mathbf{Q}_{p} 是无ramified 的。在埃默顿-吉堆栈 X 2 \mathcal{X}_{2} 中,我们可以考虑 Gal ( K ̄ / K ) 的二维模𝑝表示。 我们可以考虑 Gal ( K ̄ / K ) 的二维 mod 𝑝 表示的位置 \我们研究了霍奇-塔特权重不规则的情况,这是希尔伯特模块形式部分权重为一条件在伽罗华表示中的类似。我们证明,如果每对权重之间的间隙以 𝑝 为界(塞尔权重的不规则类似),那么这个位置是不可还原的。
Let K/QpK/\mathbf{Q}_{p} be unramified.
Inside the Emerton–Gee stack X2\mathcal{X}_{2}, one can consider the locus of two-dimensional mod 𝑝 representations of Gal(K̄/K)\mathrm{Gal}(\overline{K}/K) having a crystalline lift with specified Hodge–Tate weights.
We study the case where the Hodge–Tate weights are irregular, which is an analogue for Galois representations of the partial weight one condition for Hilbert modular forms.
We prove that if the gap between each pair of weights is bounded by 𝑝 (the irregular analogue of a Serre weight), then this locus is irreducible.
We also establish various inclusion relations between these loci.