TelescopeML - I. 通过训练机器学习模型、生成统计报告和可视化结果来解释望远镜数据集的端到端 Python 软件包

E. Gharib-Nezhad, N. Batalha, Hamed Valizadegan, Miguel J. S. Martinho, M. Habibi, Gopal Nookula
{"title":"TelescopeML - I. 通过训练机器学习模型、生成统计报告和可视化结果来解释望远镜数据集的端到端 Python 软件包","authors":"E. Gharib-Nezhad, N. Batalha, Hamed Valizadegan, Miguel J. S. Martinho, M. Habibi, Gopal Nookula","doi":"10.21105/joss.06346","DOIUrl":null,"url":null,"abstract":"We are on the verge of a revolutionary era in space exploration, thanks to advancements in telescopes such as the James Webb Space Telescope (\\textit{JWST}). High-resolution, high signal-to-noise spectra from exoplanet and brown dwarf atmospheres have been collected over the past few decades, requiring the development of accurate and reliable pipelines and tools for their analysis. Accurately and swiftly determining the spectroscopic parameters from the observational spectra of these objects is crucial for understanding their atmospheric composition and guiding future follow-up observations. \\texttt{TelescopeML} is a Python package developed to perform three main tasks: 1. Process the synthetic astronomical datasets for training a CNN model and prepare the observational dataset for later use for prediction; 2. Train a CNN model by implementing the optimal hyperparameters; and 3. Deploy the trained CNN models on the actual observational data to derive the output spectroscopic parameters.","PeriodicalId":94101,"journal":{"name":"Journal of open source software","volume":" 42","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TelescopeML – I. An End-to-End Python Package for\\nInterpreting Telescope Datasets through Training Machine Learning\\nModels, Generating Statistical Reports, and Visualizing Results\",\"authors\":\"E. Gharib-Nezhad, N. Batalha, Hamed Valizadegan, Miguel J. S. Martinho, M. Habibi, Gopal Nookula\",\"doi\":\"10.21105/joss.06346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are on the verge of a revolutionary era in space exploration, thanks to advancements in telescopes such as the James Webb Space Telescope (\\\\textit{JWST}). High-resolution, high signal-to-noise spectra from exoplanet and brown dwarf atmospheres have been collected over the past few decades, requiring the development of accurate and reliable pipelines and tools for their analysis. Accurately and swiftly determining the spectroscopic parameters from the observational spectra of these objects is crucial for understanding their atmospheric composition and guiding future follow-up observations. \\\\texttt{TelescopeML} is a Python package developed to perform three main tasks: 1. Process the synthetic astronomical datasets for training a CNN model and prepare the observational dataset for later use for prediction; 2. Train a CNN model by implementing the optimal hyperparameters; and 3. Deploy the trained CNN models on the actual observational data to derive the output spectroscopic parameters.\",\"PeriodicalId\":94101,\"journal\":{\"name\":\"Journal of open source software\",\"volume\":\" 42\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of open source software\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.21105/joss.06346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of open source software","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.21105/joss.06346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于詹姆斯-韦伯太空望远镜(James Webb Space Telescope)等望远镜的进步,我们即将迎来太空探索的革命性时代。在过去的几十年里,我们从系外行星和褐矮星大气中收集到了高分辨率、高信噪比的光谱,这就需要开发精确可靠的管道和工具来进行分析。从这些天体的观测光谱中准确而迅速地确定光谱参数,对于了解它们的大气成分和指导未来的后续观测至关重要。\texttt{TelescopeML}是一个Python软件包,用于完成三项主要任务:1.1. 处理合成天文数据集以训练 CNN 模型,并准备观测数据集以备日后用于预测;2. 通过实施最优超参数训练 CNN 模型;以及 3.在实际观测数据上部署训练好的 CNN 模型,以得出输出光谱参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TelescopeML – I. An End-to-End Python Package for Interpreting Telescope Datasets through Training Machine Learning Models, Generating Statistical Reports, and Visualizing Results
We are on the verge of a revolutionary era in space exploration, thanks to advancements in telescopes such as the James Webb Space Telescope (\textit{JWST}). High-resolution, high signal-to-noise spectra from exoplanet and brown dwarf atmospheres have been collected over the past few decades, requiring the development of accurate and reliable pipelines and tools for their analysis. Accurately and swiftly determining the spectroscopic parameters from the observational spectra of these objects is crucial for understanding their atmospheric composition and guiding future follow-up observations. \texttt{TelescopeML} is a Python package developed to perform three main tasks: 1. Process the synthetic astronomical datasets for training a CNN model and prepare the observational dataset for later use for prediction; 2. Train a CNN model by implementing the optimal hyperparameters; and 3. Deploy the trained CNN models on the actual observational data to derive the output spectroscopic parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信