Min Fu, Zhong Cao, Mingyu Zhan, Yulong Wang, Lei Chen
{"title":"转笼结构参数对秸秆微粉碎分级装置分级性能的影响:CFD 和机器学习方法","authors":"Min Fu, Zhong Cao, Mingyu Zhan, Yulong Wang, Lei Chen","doi":"10.3390/agriculture14071185","DOIUrl":null,"url":null,"abstract":"The rotor cage is a key component of the classifying device, and its structural parameters directly affect classification performance. To improve the classification performance of the straw micro-crusher classifying device, this paper proposes a CFD-ML-GA (Computational Fluid Dynamics-Machine Learning-Genetic Algorithm) method to quantitatively analyze the coupled effects of rotor cage structural parameters on classification performance. Firstly, CFD and orthogonal experimental methods are used to qualitatively investigate the effects of the number of blades, length of rotor blades, and blade installation angle on the classification performance. The conclusion obtained is that the blade installation angle exerts the greatest effect on classification performance, while the number of blades has the least effect. Subsequently, four machine learning algorithms are used to build a cut size prediction model, and, after comparison, the Random Forest Regression (RFR) model is selected. Finally, RFR is integrated with a Genetic Algorithm (GA) for quantitative parameter optimization. The quantitative analysis results of GA indicate that with 29 blades, a blade length of 232.8 mm, and a blade installation angle of 36.8°, the cut size decreases to 47.6 μm and the classifying sharpness index improves to 0.62. Compared with the optimal solution from the orthogonal experiment, the GA solution reduces the cut size by 9.33% and improves the classifying sharpness index by 9.68%. This validates the feasibility of the proposed method.","PeriodicalId":7447,"journal":{"name":"Agriculture","volume":" June","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Rotor Cage Structural Parameters on the Classification Performance of a Straw Micro-Crusher Classifying Device: CFD and Machine Learning Approach\",\"authors\":\"Min Fu, Zhong Cao, Mingyu Zhan, Yulong Wang, Lei Chen\",\"doi\":\"10.3390/agriculture14071185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rotor cage is a key component of the classifying device, and its structural parameters directly affect classification performance. To improve the classification performance of the straw micro-crusher classifying device, this paper proposes a CFD-ML-GA (Computational Fluid Dynamics-Machine Learning-Genetic Algorithm) method to quantitatively analyze the coupled effects of rotor cage structural parameters on classification performance. Firstly, CFD and orthogonal experimental methods are used to qualitatively investigate the effects of the number of blades, length of rotor blades, and blade installation angle on the classification performance. The conclusion obtained is that the blade installation angle exerts the greatest effect on classification performance, while the number of blades has the least effect. Subsequently, four machine learning algorithms are used to build a cut size prediction model, and, after comparison, the Random Forest Regression (RFR) model is selected. Finally, RFR is integrated with a Genetic Algorithm (GA) for quantitative parameter optimization. The quantitative analysis results of GA indicate that with 29 blades, a blade length of 232.8 mm, and a blade installation angle of 36.8°, the cut size decreases to 47.6 μm and the classifying sharpness index improves to 0.62. Compared with the optimal solution from the orthogonal experiment, the GA solution reduces the cut size by 9.33% and improves the classifying sharpness index by 9.68%. This validates the feasibility of the proposed method.\",\"PeriodicalId\":7447,\"journal\":{\"name\":\"Agriculture\",\"volume\":\" June\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture14071185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriculture14071185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Influence of Rotor Cage Structural Parameters on the Classification Performance of a Straw Micro-Crusher Classifying Device: CFD and Machine Learning Approach
The rotor cage is a key component of the classifying device, and its structural parameters directly affect classification performance. To improve the classification performance of the straw micro-crusher classifying device, this paper proposes a CFD-ML-GA (Computational Fluid Dynamics-Machine Learning-Genetic Algorithm) method to quantitatively analyze the coupled effects of rotor cage structural parameters on classification performance. Firstly, CFD and orthogonal experimental methods are used to qualitatively investigate the effects of the number of blades, length of rotor blades, and blade installation angle on the classification performance. The conclusion obtained is that the blade installation angle exerts the greatest effect on classification performance, while the number of blades has the least effect. Subsequently, four machine learning algorithms are used to build a cut size prediction model, and, after comparison, the Random Forest Regression (RFR) model is selected. Finally, RFR is integrated with a Genetic Algorithm (GA) for quantitative parameter optimization. The quantitative analysis results of GA indicate that with 29 blades, a blade length of 232.8 mm, and a blade installation angle of 36.8°, the cut size decreases to 47.6 μm and the classifying sharpness index improves to 0.62. Compared with the optimal solution from the orthogonal experiment, the GA solution reduces the cut size by 9.33% and improves the classifying sharpness index by 9.68%. This validates the feasibility of the proposed method.
AgricultureAgricultural and Biological Sciences-Horticulture
CiteScore
1.90
自引率
0.00%
发文量
4
审稿时长
11 weeks
期刊介绍:
The Agriculture (Poľnohospodárstvo) is a peer-reviewed international journal that publishes mainly original research papers. The journal examines various aspects of research and is devoted to the publication of papers dealing with the following subjects: plant nutrition, protection, breeding, genetics and biotechnology, quality of plant products, grassland, mountain agriculture and environment, soil science and conservation, mechanization and economics of plant production and other spheres of plant science. Journal is published 4 times per year.