索波列正交多项式、高斯-伯尔因式分解和扰动

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gerardo Ariznabarreta, Manuel Mañas, Piergiulio Tempesta
{"title":"索波列正交多项式、高斯-伯尔因式分解和扰动","authors":"Gerardo Ariznabarreta,&nbsp;Manuel Mañas,&nbsp;Piergiulio Tempesta","doi":"10.1007/s13324-024-00883-5","DOIUrl":null,"url":null,"abstract":"<div><p>We present a comprehensive class of Sobolev bi-orthogonal polynomial sequences, which emerge from a moment matrix with an <i>LU</i> factorization. These sequences are associated with a measure matrix defining the Sobolev bilinear form. Additionally, we develop a theory of deformations for Sobolev bilinear forms, focusing on polynomial deformations of the measure matrix. Notably, we introduce the concepts of Christoffel–Sobolev and Geronimus–Sobolev transformations. The connection formulas between these newly introduced polynomial sequences and existing ones are explicitly determined.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-024-00883-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Sobolev orthogonal polynomials, Gauss–Borel factorization and perturbations\",\"authors\":\"Gerardo Ariznabarreta,&nbsp;Manuel Mañas,&nbsp;Piergiulio Tempesta\",\"doi\":\"10.1007/s13324-024-00883-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a comprehensive class of Sobolev bi-orthogonal polynomial sequences, which emerge from a moment matrix with an <i>LU</i> factorization. These sequences are associated with a measure matrix defining the Sobolev bilinear form. Additionally, we develop a theory of deformations for Sobolev bilinear forms, focusing on polynomial deformations of the measure matrix. Notably, we introduce the concepts of Christoffel–Sobolev and Geronimus–Sobolev transformations. The connection formulas between these newly introduced polynomial sequences and existing ones are explicitly determined.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-024-00883-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00883-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00883-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一类全面的 Sobolev 双正交多项式序列,它们来自具有 LU 因式分解的矩阵。这些序列与定义索博廖双线性形式的度量矩阵相关联。此外,我们还发展了 Sobolev 双线性形式的变形理论,重点是度量矩阵的多项式变形。值得注意的是,我们引入了 Christoffel-Sobolev 和 Geronimus-Sobolev 变换的概念。这些新引入的多项式序列与现有序列之间的连接公式已被明确确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sobolev orthogonal polynomials, Gauss–Borel factorization and perturbations

We present a comprehensive class of Sobolev bi-orthogonal polynomial sequences, which emerge from a moment matrix with an LU factorization. These sequences are associated with a measure matrix defining the Sobolev bilinear form. Additionally, we develop a theory of deformations for Sobolev bilinear forms, focusing on polynomial deformations of the measure matrix. Notably, we introduce the concepts of Christoffel–Sobolev and Geronimus–Sobolev transformations. The connection formulas between these newly introduced polynomial sequences and existing ones are explicitly determined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信