巴拿赫代数上锥元空间中ψ-收缩映射的定点方法论及其支持性应用

IF 0.7 Q2 MATHEMATICS
R. A. Rashwan, H. Hammad, Mohamed Gamal, Saleh Omran, M. De La Sen
{"title":"巴拿赫代数上锥元空间中ψ-收缩映射的定点方法论及其支持性应用","authors":"R. A. Rashwan, H. Hammad, Mohamed Gamal, Saleh Omran, M. De La Sen","doi":"10.28924/2291-8639-22-2024-120","DOIUrl":null,"url":null,"abstract":"The explicit aim of this manuscript is to obtain fixed point consequences under novel ψ-contraction mappings in a complete cone metric space over Banach algebra. We connect and relate different fixed point theorems by using the idea of ψ-contraction mappings, providing a thorough viewpoint that deepens our comprehension of this topic. Our theorems generalize and unify many results in the scientific literature. These prospective extensions offer intriguing research directions and have the potential to further advance the study of fixed point theory. The investigation of examples plays an extremely crucial role in verifying the effectiveness and validity of our theoretical results. Moreover, to support the theoretical results, some examples are investigated to emphasize these results. Ultimately, the existence and uniqueness of the solution to the Urysohn integral and nonlinear fractional differential equation are cooperated as applications to provide an authoritative basis for dealing with actual problems that include these equations.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed Point Methodologies for ψ-Contraction Mappings in Cone Metric Spaces over Banach Algebra with Supportive Applications\",\"authors\":\"R. A. Rashwan, H. Hammad, Mohamed Gamal, Saleh Omran, M. De La Sen\",\"doi\":\"10.28924/2291-8639-22-2024-120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The explicit aim of this manuscript is to obtain fixed point consequences under novel ψ-contraction mappings in a complete cone metric space over Banach algebra. We connect and relate different fixed point theorems by using the idea of ψ-contraction mappings, providing a thorough viewpoint that deepens our comprehension of this topic. Our theorems generalize and unify many results in the scientific literature. These prospective extensions offer intriguing research directions and have the potential to further advance the study of fixed point theory. The investigation of examples plays an extremely crucial role in verifying the effectiveness and validity of our theoretical results. Moreover, to support the theoretical results, some examples are investigated to emphasize these results. Ultimately, the existence and uniqueness of the solution to the Urysohn integral and nonlinear fractional differential equation are cooperated as applications to provide an authoritative basis for dealing with actual problems that include these equations.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-22-2024-120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-22-2024-120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本手稿的明确目的是在巴拿赫代数上的完整圆锥度量空间中,获得新颖的ψ-收缩映射下的定点后果。我们利用ψ-收缩映射的思想将不同的定点定理联系起来,提供了一个全面的视角,加深了我们对这一主题的理解。我们的定理概括并统一了科学文献中的许多结果。这些前瞻性的扩展提供了引人入胜的研究方向,并有可能进一步推动定点理论的研究。对实例的研究对验证我们理论结果的有效性和正确性起着极其重要的作用。此外,为了支持理论结果,我们还研究了一些例子来强调这些结果。最后,将乌里索恩积分和非线性分微分方程解的存在性和唯一性作为应用进行了合作,为处理包含这些方程的实际问题提供了权威依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fixed Point Methodologies for ψ-Contraction Mappings in Cone Metric Spaces over Banach Algebra with Supportive Applications
The explicit aim of this manuscript is to obtain fixed point consequences under novel ψ-contraction mappings in a complete cone metric space over Banach algebra. We connect and relate different fixed point theorems by using the idea of ψ-contraction mappings, providing a thorough viewpoint that deepens our comprehension of this topic. Our theorems generalize and unify many results in the scientific literature. These prospective extensions offer intriguing research directions and have the potential to further advance the study of fixed point theory. The investigation of examples plays an extremely crucial role in verifying the effectiveness and validity of our theoretical results. Moreover, to support the theoretical results, some examples are investigated to emphasize these results. Ultimately, the existence and uniqueness of the solution to the Urysohn integral and nonlinear fractional differential equation are cooperated as applications to provide an authoritative basis for dealing with actual problems that include these equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信