利用机器学习算法预测高压条件下固体粉末润滑剂的摩擦系数

IF 1.2 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
J. Jose, A. Suryawanshi, N. Behera
{"title":"利用机器学习算法预测高压条件下固体粉末润滑剂的摩擦系数","authors":"J. Jose,&nbsp;A. Suryawanshi,&nbsp;N. Behera","doi":"10.1002/mawe.202300277","DOIUrl":null,"url":null,"abstract":"<p>Conventional liquid lubricants prove inadequate for effective lubrication in conditions characterized by high temperatures and high vacuum environments. In such extreme scenarios, powder lubricants emerge as a more viable solution. The present study is to conduct a series of experiments using a reciprocating wear test setup and evaluate the capability of four different machine learning models in analysing the tribological attributes of metals when lubricated with three distinct powder types: zirconium dioxide, copper oxide, and molybdenum disulfide, specifically under conditions of elevated contact pressures and dry environments. The experiments were systematically carried out encompassing a range of load and temperature combinations. Four different machine learning models (MLP, KNN, extreme gradient boosting and light gradient-boosting machine) were used for predicting the coefficient of friction of metals lubricated with different powders. Extreme gradient boosting machine learning model gives better result than the other models with mean absolute error, root mean squared error, R<sup>2</sup> value and average absolute deviation percentage of 0.0215, 0.0278, 0.9962 and respectively.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"55 7","pages":"936-946"},"PeriodicalIF":1.2000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of coefficient of friction of solid powder lubricants under high pressure conditions using machine learning algorithms\\n Vorhersage des Reibungskoeffizienten von Festpulverschmierstoffen unter Hochdruckbedingungen mit Hilfe von Algorithmen des maschinellen Lernens\",\"authors\":\"J. Jose,&nbsp;A. Suryawanshi,&nbsp;N. Behera\",\"doi\":\"10.1002/mawe.202300277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional liquid lubricants prove inadequate for effective lubrication in conditions characterized by high temperatures and high vacuum environments. In such extreme scenarios, powder lubricants emerge as a more viable solution. The present study is to conduct a series of experiments using a reciprocating wear test setup and evaluate the capability of four different machine learning models in analysing the tribological attributes of metals when lubricated with three distinct powder types: zirconium dioxide, copper oxide, and molybdenum disulfide, specifically under conditions of elevated contact pressures and dry environments. The experiments were systematically carried out encompassing a range of load and temperature combinations. Four different machine learning models (MLP, KNN, extreme gradient boosting and light gradient-boosting machine) were used for predicting the coefficient of friction of metals lubricated with different powders. Extreme gradient boosting machine learning model gives better result than the other models with mean absolute error, root mean squared error, R<sup>2</sup> value and average absolute deviation percentage of 0.0215, 0.0278, 0.9962 and respectively.</p>\",\"PeriodicalId\":18366,\"journal\":{\"name\":\"Materialwissenschaft und Werkstofftechnik\",\"volume\":\"55 7\",\"pages\":\"936-946\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialwissenschaft und Werkstofftechnik\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300277\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300277","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在高温和高真空环境下,传统的液体润滑剂已被证明无法提供有效的润滑。在这种极端情况下,粉末润滑剂成为更可行的解决方案。本研究使用往复磨损测试装置进行了一系列实验,并评估了四种不同的机器学习模型在分析使用三种不同粉末类型(二氧化锆、氧化铜和二硫化钼)润滑时金属摩擦学属性的能力,特别是在接触压力升高和干燥环境条件下。实验系统地涵盖了一系列负载和温度组合。四种不同的机器学习模型(MLP、KNN、极端梯度提升和轻梯度提升机)被用于预测使用不同粉末润滑的金属的摩擦系数。极端梯度提升机器学习模型的平均绝对误差、均方根误差、R2 值和平均绝对偏差百分比分别为 0.0215、0.0278 和 0.9962,结果优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prediction of coefficient of friction of solid powder lubricants under high pressure conditions using machine learning algorithms
      Vorhersage des Reibungskoeffizienten von Festpulverschmierstoffen unter Hochdruckbedingungen mit Hilfe von Algorithmen des maschinellen Lernens

Prediction of coefficient of friction of solid powder lubricants under high pressure conditions using machine learning algorithms Vorhersage des Reibungskoeffizienten von Festpulverschmierstoffen unter Hochdruckbedingungen mit Hilfe von Algorithmen des maschinellen Lernens

Conventional liquid lubricants prove inadequate for effective lubrication in conditions characterized by high temperatures and high vacuum environments. In such extreme scenarios, powder lubricants emerge as a more viable solution. The present study is to conduct a series of experiments using a reciprocating wear test setup and evaluate the capability of four different machine learning models in analysing the tribological attributes of metals when lubricated with three distinct powder types: zirconium dioxide, copper oxide, and molybdenum disulfide, specifically under conditions of elevated contact pressures and dry environments. The experiments were systematically carried out encompassing a range of load and temperature combinations. Four different machine learning models (MLP, KNN, extreme gradient boosting and light gradient-boosting machine) were used for predicting the coefficient of friction of metals lubricated with different powders. Extreme gradient boosting machine learning model gives better result than the other models with mean absolute error, root mean squared error, R2 value and average absolute deviation percentage of 0.0215, 0.0278, 0.9962 and respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialwissenschaft und Werkstofftechnik
Materialwissenschaft und Werkstofftechnik 工程技术-材料科学:综合
CiteScore
2.10
自引率
9.10%
发文量
154
审稿时长
4-8 weeks
期刊介绍: Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing. Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline. Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信