局部域上曲线的对偶定理

A. Krishna, Jitendra Rathore, Samiron Sadhukhan
{"title":"局部域上曲线的对偶定理","authors":"A. Krishna, Jitendra Rathore, Samiron Sadhukhan","doi":"10.1090/btran/187","DOIUrl":null,"url":null,"abstract":"We prove duality theorems for the étale cohomology of split tori on smooth curves over a local field of positive characteristic. In particular, we show that the classical Brauer–Manin pairing between the Brauer and Picard groups of smooth projective curves over such a field extends to arbitrary smooth curves over the field. As another consequence, we obtain a description of the Brauer group of the function fields of curves over local fields in terms of the characters of the idele class groups.","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"119 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Duality theorems for curves over local fields\",\"authors\":\"A. Krishna, Jitendra Rathore, Samiron Sadhukhan\",\"doi\":\"10.1090/btran/187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove duality theorems for the étale cohomology of split tori on smooth curves over a local field of positive characteristic. In particular, we show that the classical Brauer–Manin pairing between the Brauer and Picard groups of smooth projective curves over such a field extends to arbitrary smooth curves over the field. As another consequence, we obtain a description of the Brauer group of the function fields of curves over local fields in terms of the characters of the idele class groups.\",\"PeriodicalId\":377306,\"journal\":{\"name\":\"Transactions of the American Mathematical Society, Series B\",\"volume\":\"119 28\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the American Mathematical Society, Series B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/btran/187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了正特征局部域上光滑曲线上分裂环的 étale 同调定理。特别是,我们证明了在这样一个域上的光滑投影曲线的布劳尔群和皮卡德群之间的经典布劳尔-马宁配对扩展到该域上的任意光滑曲线。另一个结果是,我们用idele类群的特征描述了局部域上曲线函数域的布劳尔群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Duality theorems for curves over local fields
We prove duality theorems for the étale cohomology of split tori on smooth curves over a local field of positive characteristic. In particular, we show that the classical Brauer–Manin pairing between the Brauer and Picard groups of smooth projective curves over such a field extends to arbitrary smooth curves over the field. As another consequence, we obtain a description of the Brauer group of the function fields of curves over local fields in terms of the characters of the idele class groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信