Song Zhang, Daqi Lin, M. Kettunen, Cem Yuksel, Chris Wyman
{"title":"区域 ReSTIR:为实时散焦和抗锯齿进行重采样","authors":"Song Zhang, Daqi Lin, M. Kettunen, Cem Yuksel, Chris Wyman","doi":"10.1145/3658210","DOIUrl":null,"url":null,"abstract":"Recent advancements in spatiotemporal reservoir resampling (ReSTIR) leverage sample reuse from neighbors to efficiently evaluate the path integral. Like rasterization, ReSTIR methods implicitly assume a pinhole camera and evaluate the light arriving at a pixel through a single predetermined subpixel location at a time (e.g., the pixel center). This prevents efficient path reuse in and near pixels with high-frequency details.\n \n We introduce\n Area ReSTIR\n , extending ReSTIR reservoirs to also integrate each pixel's 4D ray space, including 2D areas on the film and lens. We design novel subpixel-tracking temporal reuse and shift mappings that maximize resampling quality in such regions. This robustifies ReSTIR against high-frequency content, letting us importance sample subpixel and lens coordinates and efficiently render antialiasing and depth of field.\n","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Area ReSTIR: Resampling for Real-Time Defocus and Antialiasing\",\"authors\":\"Song Zhang, Daqi Lin, M. Kettunen, Cem Yuksel, Chris Wyman\",\"doi\":\"10.1145/3658210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent advancements in spatiotemporal reservoir resampling (ReSTIR) leverage sample reuse from neighbors to efficiently evaluate the path integral. Like rasterization, ReSTIR methods implicitly assume a pinhole camera and evaluate the light arriving at a pixel through a single predetermined subpixel location at a time (e.g., the pixel center). This prevents efficient path reuse in and near pixels with high-frequency details.\\n \\n We introduce\\n Area ReSTIR\\n , extending ReSTIR reservoirs to also integrate each pixel's 4D ray space, including 2D areas on the film and lens. We design novel subpixel-tracking temporal reuse and shift mappings that maximize resampling quality in such regions. This robustifies ReSTIR against high-frequency content, letting us importance sample subpixel and lens coordinates and efficiently render antialiasing and depth of field.\\n\",\"PeriodicalId\":50913,\"journal\":{\"name\":\"ACM Transactions on Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3658210\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3658210","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Area ReSTIR: Resampling for Real-Time Defocus and Antialiasing
Recent advancements in spatiotemporal reservoir resampling (ReSTIR) leverage sample reuse from neighbors to efficiently evaluate the path integral. Like rasterization, ReSTIR methods implicitly assume a pinhole camera and evaluate the light arriving at a pixel through a single predetermined subpixel location at a time (e.g., the pixel center). This prevents efficient path reuse in and near pixels with high-frequency details.
We introduce
Area ReSTIR
, extending ReSTIR reservoirs to also integrate each pixel's 4D ray space, including 2D areas on the film and lens. We design novel subpixel-tracking temporal reuse and shift mappings that maximize resampling quality in such regions. This robustifies ReSTIR against high-frequency content, letting us importance sample subpixel and lens coordinates and efficiently render antialiasing and depth of field.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.