局部金属积累空间形式中斜面子曼形体的几何不等式

Axioms Pub Date : 2024-07-19 DOI:10.3390/axioms13070486
Yanlin Li, Mohd Aquib, Meraj Ali Khan, Ibrahim Al-Dayel, M. Z. Youssef
{"title":"局部金属积累空间形式中斜面子曼形体的几何不等式","authors":"Yanlin Li, Mohd Aquib, Meraj Ali Khan, Ibrahim Al-Dayel, M. Z. Youssef","doi":"10.3390/axioms13070486","DOIUrl":null,"url":null,"abstract":"In this particular article, our focus revolves around the establishment of a geometric inequality, commonly referred to as Chen’s inequality. We specifically apply this inequality to assess the square norm of the mean curvature vector and the warping function of warped product slant submanifolds. Our investigation takes place within the context of locally metallic product space forms with quarter-symmetric metric connections. Additionally, we delve into the condition that determines when equality is achieved within the inequality. Furthermore, we explore a number of implications of our findings.","PeriodicalId":502355,"journal":{"name":"Axioms","volume":"102 29","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Inequalities of Slant Submanifolds in Locally Metallic Product Space Forms\",\"authors\":\"Yanlin Li, Mohd Aquib, Meraj Ali Khan, Ibrahim Al-Dayel, M. Z. Youssef\",\"doi\":\"10.3390/axioms13070486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this particular article, our focus revolves around the establishment of a geometric inequality, commonly referred to as Chen’s inequality. We specifically apply this inequality to assess the square norm of the mean curvature vector and the warping function of warped product slant submanifolds. Our investigation takes place within the context of locally metallic product space forms with quarter-symmetric metric connections. Additionally, we delve into the condition that determines when equality is achieved within the inequality. Furthermore, we explore a number of implications of our findings.\",\"PeriodicalId\":502355,\"journal\":{\"name\":\"Axioms\",\"volume\":\"102 29\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Axioms\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/axioms13070486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Axioms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/axioms13070486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们的重点是建立一个几何不等式,即通常所说的陈氏不等式。我们特别应用这个不等式来评估平均曲率向量的平方法和翘曲积斜子形体的翘曲函数。我们的研究是在具有四分之一对称度量连接的局部金属积空间形式的背景下进行的。此外,我们还深入研究了在不等式中实现相等的条件。此外,我们还探讨了我们的发现的一些意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric Inequalities of Slant Submanifolds in Locally Metallic Product Space Forms
In this particular article, our focus revolves around the establishment of a geometric inequality, commonly referred to as Chen’s inequality. We specifically apply this inequality to assess the square norm of the mean curvature vector and the warping function of warped product slant submanifolds. Our investigation takes place within the context of locally metallic product space forms with quarter-symmetric metric connections. Additionally, we delve into the condition that determines when equality is achieved within the inequality. Furthermore, we explore a number of implications of our findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信