{"title":"利用增强型概率金字塔神经网络设计基于太赫兹折射率的螺旋中空芯光子晶体生物传感器,用于脑肿瘤检测","authors":"Purushothaman G, Arulmozhiyal R","doi":"10.1149/2162-8777/ad658c","DOIUrl":null,"url":null,"abstract":"\n Cancer diagnosis is difficult and costly due to the complexity of the brain. Photonic technology-based biosensors show potential for identifying malignant tissues, including brain tumors, but they are often costly, time-consuming, and computationally difficult. To address these challenges, we propose an enhanced probabilistic pyramid neural networks (EPPNN)-based hollow-core photonic crystal fiber (PCF) biosensor with terahertz refractive index (THzBio-ECPPN) for detection of cancerous brain tumors. The approach is divided into two stages: biosensor design and brain tumor detection. Initially, PCF geometry with suspended cladding and a spiral-shaped hollow-core in the terahertz (THz) band is proposed. The PCF biosensors' characteristics are then calculated using the EPPNN model. The EPPNN model's hyperparameters are modified using the circle-inspired optimization algorithm to maximize accuracy and minimize effective mode loss. The proposed biosensor is then used to identify brain tumors. Experimental evaluations utilizing MATLAB show that the suggested strategy surpasses earlier methods, with a higher sensitivity (98%). The sensor has exceptional performance characteristics, such as a high figure of merit of 1.25-1.35 RI range and sensitivity of 50000 nm/RIU, indicating its potential for precise detection of changes in refractive index. This combination of photonic crystal structures and neural networks has enormous potential for improving cancerous tumor accuracy to 99.92%, precision to 99.23%, specificity to 99.73%,and sensitivity to 99.36% of brain tumor diagnosis","PeriodicalId":504734,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of Terahertz Refractive Index-Based Spiral Hollow-Core Photonic Crystal Biosensor Using Enhanced Probabilistic Pyramid Neural Networks for Brain Tumor Detection\",\"authors\":\"Purushothaman G, Arulmozhiyal R\",\"doi\":\"10.1149/2162-8777/ad658c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cancer diagnosis is difficult and costly due to the complexity of the brain. Photonic technology-based biosensors show potential for identifying malignant tissues, including brain tumors, but they are often costly, time-consuming, and computationally difficult. To address these challenges, we propose an enhanced probabilistic pyramid neural networks (EPPNN)-based hollow-core photonic crystal fiber (PCF) biosensor with terahertz refractive index (THzBio-ECPPN) for detection of cancerous brain tumors. The approach is divided into two stages: biosensor design and brain tumor detection. Initially, PCF geometry with suspended cladding and a spiral-shaped hollow-core in the terahertz (THz) band is proposed. The PCF biosensors' characteristics are then calculated using the EPPNN model. The EPPNN model's hyperparameters are modified using the circle-inspired optimization algorithm to maximize accuracy and minimize effective mode loss. The proposed biosensor is then used to identify brain tumors. Experimental evaluations utilizing MATLAB show that the suggested strategy surpasses earlier methods, with a higher sensitivity (98%). The sensor has exceptional performance characteristics, such as a high figure of merit of 1.25-1.35 RI range and sensitivity of 50000 nm/RIU, indicating its potential for precise detection of changes in refractive index. This combination of photonic crystal structures and neural networks has enormous potential for improving cancerous tumor accuracy to 99.92%, precision to 99.23%, specificity to 99.73%,and sensitivity to 99.36% of brain tumor diagnosis\",\"PeriodicalId\":504734,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad658c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad658c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of Terahertz Refractive Index-Based Spiral Hollow-Core Photonic Crystal Biosensor Using Enhanced Probabilistic Pyramid Neural Networks for Brain Tumor Detection
Cancer diagnosis is difficult and costly due to the complexity of the brain. Photonic technology-based biosensors show potential for identifying malignant tissues, including brain tumors, but they are often costly, time-consuming, and computationally difficult. To address these challenges, we propose an enhanced probabilistic pyramid neural networks (EPPNN)-based hollow-core photonic crystal fiber (PCF) biosensor with terahertz refractive index (THzBio-ECPPN) for detection of cancerous brain tumors. The approach is divided into two stages: biosensor design and brain tumor detection. Initially, PCF geometry with suspended cladding and a spiral-shaped hollow-core in the terahertz (THz) band is proposed. The PCF biosensors' characteristics are then calculated using the EPPNN model. The EPPNN model's hyperparameters are modified using the circle-inspired optimization algorithm to maximize accuracy and minimize effective mode loss. The proposed biosensor is then used to identify brain tumors. Experimental evaluations utilizing MATLAB show that the suggested strategy surpasses earlier methods, with a higher sensitivity (98%). The sensor has exceptional performance characteristics, such as a high figure of merit of 1.25-1.35 RI range and sensitivity of 50000 nm/RIU, indicating its potential for precise detection of changes in refractive index. This combination of photonic crystal structures and neural networks has enormous potential for improving cancerous tumor accuracy to 99.92%, precision to 99.23%, specificity to 99.73%,and sensitivity to 99.36% of brain tumor diagnosis