{"title":"具有两个自由度的旋转哈密尔顿系统中的周期轨道分割面","authors":"M. Katsanikas, Stephen Wiggins","doi":"10.1142/s021812742450130x","DOIUrl":null,"url":null,"abstract":"In this paper, we extend the notion of periodic orbit-dividing surfaces (PODS) to rotating Hamiltonian systems with two degrees of freedom. First, we present a method that enables us to apply the classical algorithm for the construction of PODS [Pechukas & McLafferty, 1973; Pechukas, 1981; Pollak & Pechukas, 1978; Pollak, 1985] in rotating Hamiltonian systems with two degrees of freedom. Then we study the structure of these surfaces in a rotating quadratic normal-form Hamiltonian system with two degrees of freedom.","PeriodicalId":506426,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":"114 48","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic Orbit-Dividing Surfaces in Rotating Hamiltonian Systems with Two Degrees of Freedom\",\"authors\":\"M. Katsanikas, Stephen Wiggins\",\"doi\":\"10.1142/s021812742450130x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we extend the notion of periodic orbit-dividing surfaces (PODS) to rotating Hamiltonian systems with two degrees of freedom. First, we present a method that enables us to apply the classical algorithm for the construction of PODS [Pechukas & McLafferty, 1973; Pechukas, 1981; Pollak & Pechukas, 1978; Pollak, 1985] in rotating Hamiltonian systems with two degrees of freedom. Then we study the structure of these surfaces in a rotating quadratic normal-form Hamiltonian system with two degrees of freedom.\",\"PeriodicalId\":506426,\"journal\":{\"name\":\"International Journal of Bifurcation and Chaos\",\"volume\":\"114 48\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bifurcation and Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s021812742450130x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021812742450130x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Periodic Orbit-Dividing Surfaces in Rotating Hamiltonian Systems with Two Degrees of Freedom
In this paper, we extend the notion of periodic orbit-dividing surfaces (PODS) to rotating Hamiltonian systems with two degrees of freedom. First, we present a method that enables us to apply the classical algorithm for the construction of PODS [Pechukas & McLafferty, 1973; Pechukas, 1981; Pollak & Pechukas, 1978; Pollak, 1985] in rotating Hamiltonian systems with two degrees of freedom. Then we study the structure of these surfaces in a rotating quadratic normal-form Hamiltonian system with two degrees of freedom.