用修正的特伦布莱分式算子定义的不同类别中解析函数的主要性

IF 0.7 Q2 MATHEMATICS
Indushree Mohan, Madhu Venkataraman
{"title":"用修正的特伦布莱分式算子定义的不同类别中解析函数的主要性","authors":"Indushree Mohan, Madhu Venkataraman","doi":"10.28924/2291-8639-22-2024-119","DOIUrl":null,"url":null,"abstract":"This paper presents and investigates three distinct kinds of analytic functions described by the Modified Tremblay Fractional Operator: IΥ[A,B], QΥ[A,B], and PΥ[A,B]. We give a detailed knowledge of these unique categories features by exploring majorization difficulties within them. By means of a careful analysis of majorization phenomena, we present a range of novel findings that demonstrate the significance of parameter specialisation in these classes. This work greatly expands our understanding of analytic functions and improves the field of mathematical analysis as a whole. To sum up, this study offers a comprehensive investigation of new analytic function classes, clarifies certain aspects of majorization, and makes significant contributions that broaden our understanding of complex analysis and geometric function theory.","PeriodicalId":45204,"journal":{"name":"International Journal of Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Majorization in Analytic Functions Among Distinct Classes Defined by Modified Tremblay Fractional Operator\",\"authors\":\"Indushree Mohan, Madhu Venkataraman\",\"doi\":\"10.28924/2291-8639-22-2024-119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents and investigates three distinct kinds of analytic functions described by the Modified Tremblay Fractional Operator: IΥ[A,B], QΥ[A,B], and PΥ[A,B]. We give a detailed knowledge of these unique categories features by exploring majorization difficulties within them. By means of a careful analysis of majorization phenomena, we present a range of novel findings that demonstrate the significance of parameter specialisation in these classes. This work greatly expands our understanding of analytic functions and improves the field of mathematical analysis as a whole. To sum up, this study offers a comprehensive investigation of new analytic function classes, clarifies certain aspects of majorization, and makes significant contributions that broaden our understanding of complex analysis and geometric function theory.\",\"PeriodicalId\":45204,\"journal\":{\"name\":\"International Journal of Analysis and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28924/2291-8639-22-2024-119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28924/2291-8639-22-2024-119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍并研究了修正特伦布莱分式算子所描述的三种不同的解析函数:IΥ[A,B]、QΥ[A,B]和 PΥ[A,B]。我们通过探讨其中的大数化困难,详细了解这些独特的类别特征。通过仔细分析大化现象,我们提出了一系列新发现,证明了参数特化在这些类别中的重要性。这项工作极大地拓展了我们对解析函数的理解,并改进了整个数学分析领域。总之,这项研究全面考察了新的解析函数类,阐明了大化的某些方面,并做出了重大贡献,拓宽了我们对复分析和几何函数论的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Majorization in Analytic Functions Among Distinct Classes Defined by Modified Tremblay Fractional Operator
This paper presents and investigates three distinct kinds of analytic functions described by the Modified Tremblay Fractional Operator: IΥ[A,B], QΥ[A,B], and PΥ[A,B]. We give a detailed knowledge of these unique categories features by exploring majorization difficulties within them. By means of a careful analysis of majorization phenomena, we present a range of novel findings that demonstrate the significance of parameter specialisation in these classes. This work greatly expands our understanding of analytic functions and improves the field of mathematical analysis as a whole. To sum up, this study offers a comprehensive investigation of new analytic function classes, clarifies certain aspects of majorization, and makes significant contributions that broaden our understanding of complex analysis and geometric function theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
10.00%
发文量
60
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信