MIS 2 晚期东欧平原围冰带河流的水文规律

IF 2.3 Q2 GEOSCIENCES, MULTIDISCIPLINARY
Quaternary Pub Date : 2024-07-19 DOI:10.3390/quat7030032
A. Sidorchuk, Andrey Panin, Olga Borisova
{"title":"MIS 2 晚期东欧平原围冰带河流的水文规律","authors":"A. Sidorchuk, Andrey Panin, Olga Borisova","doi":"10.3390/quat7030032","DOIUrl":null,"url":null,"abstract":"At the end of the Pleniglacial and the first half of the Late Glacial period, approximately between 18 and 14 ka BP, rivers of the central and southern parts of the East European Plain had channels up to 10 times as large as the present day channels of the same rivers. These ancient channels, called large meandering palaeochannels, are widespread in river floodplains and low terraces. The hydrological regime of these large rivers is of great interest in terms of the palaeoclimatology of the late Marine Isotope Stage 2 (MIS 2). In this study, we aimed at quantitative estimation of maximum flood discharges of rivers in the Dnepr, Don and Volga basins in the late MIS 2. To approach this, we used massive measurements of the morphometric characteristics of large palaeochannels on topographic maps and remote sensing data—palaeochannel width, meander wavelength and their relationships with river flow parameters. The runoff depth of the maximum flood, which corresponds to the maximum depth of daily snow thaw during the snowmelt period, was obtained for unit basins with an area of <1000 km2. The mean value for the southern megaslope of the East European Plain was 44.2 mm/day (6 times the modern value), with 46 mm/day for the Volga River (5.5 times), 45 mm/day (6.3 times) for the Don River and 39 mm/day (8 times the modern value) for the Dnepr River basins. In general, the Dnepr basin was drier than the Don and Volga basins, which corresponds well to the modern distribution of humidity. At the same time, the westernmost part of the Dnepr River basin was relatively wet in the past, and the decrease in humidity from the past to the modern situation was greater there than in the eastern and central regions. The obtained results contradict the prevailing ideas, based mainly on climatic modeling and palynological data, that the climate of Europe was cold and dry during MIS 2. The reason is that palaeoclimatic reconstructions were made predominantly for the LGM epoch (23–20 ka BP). On the East European Plain, the interval 18–14 ka BP is rather poorly studied. Our results of paleoclimatological and palaeohydrological reconstructions showed that the Late Pleniglacial and the first half of the Late Glacial period was characterized by a dramatic increase in precipitation and river discharge relative to the present day.","PeriodicalId":54131,"journal":{"name":"Quaternary","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrological Regime of Rivers in the Periglacial Zone of the East European Plain in the Late MIS 2\",\"authors\":\"A. Sidorchuk, Andrey Panin, Olga Borisova\",\"doi\":\"10.3390/quat7030032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At the end of the Pleniglacial and the first half of the Late Glacial period, approximately between 18 and 14 ka BP, rivers of the central and southern parts of the East European Plain had channels up to 10 times as large as the present day channels of the same rivers. These ancient channels, called large meandering palaeochannels, are widespread in river floodplains and low terraces. The hydrological regime of these large rivers is of great interest in terms of the palaeoclimatology of the late Marine Isotope Stage 2 (MIS 2). In this study, we aimed at quantitative estimation of maximum flood discharges of rivers in the Dnepr, Don and Volga basins in the late MIS 2. To approach this, we used massive measurements of the morphometric characteristics of large palaeochannels on topographic maps and remote sensing data—palaeochannel width, meander wavelength and their relationships with river flow parameters. The runoff depth of the maximum flood, which corresponds to the maximum depth of daily snow thaw during the snowmelt period, was obtained for unit basins with an area of <1000 km2. The mean value for the southern megaslope of the East European Plain was 44.2 mm/day (6 times the modern value), with 46 mm/day for the Volga River (5.5 times), 45 mm/day (6.3 times) for the Don River and 39 mm/day (8 times the modern value) for the Dnepr River basins. In general, the Dnepr basin was drier than the Don and Volga basins, which corresponds well to the modern distribution of humidity. At the same time, the westernmost part of the Dnepr River basin was relatively wet in the past, and the decrease in humidity from the past to the modern situation was greater there than in the eastern and central regions. The obtained results contradict the prevailing ideas, based mainly on climatic modeling and palynological data, that the climate of Europe was cold and dry during MIS 2. The reason is that palaeoclimatic reconstructions were made predominantly for the LGM epoch (23–20 ka BP). On the East European Plain, the interval 18–14 ka BP is rather poorly studied. Our results of paleoclimatological and palaeohydrological reconstructions showed that the Late Pleniglacial and the first half of the Late Glacial period was characterized by a dramatic increase in precipitation and river discharge relative to the present day.\",\"PeriodicalId\":54131,\"journal\":{\"name\":\"Quaternary\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quaternary\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/quat7030032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/quat7030032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在新生冰期末期和晚冰期前半期,大约在公元前 18 至 14 千年之间,东欧平原中部和南部的河流河道比现在的河道大 10 倍。这些古河道被称为大型蜿蜒古河道,广泛分布于河流冲积平原和低阶地。从海洋同位素第二阶段(MIS 2)晚期古气候学的角度来看,这些大河的水文机制具有重大意义。为此,我们利用地形图和遥感数据对大型古河道的形态特征--古河道宽度、蜿蜒波长及其与河流流量参数的关系--进行了大量测量。对于面积小于 1000 平方公里的单元流域,最大洪水的径流深度与融雪期每日积雪解冻的最大深度相对应。东欧平原南部特大斜坡的平均值为 44.2 毫米/天(现代值的 6 倍),伏尔加河为 46 毫米/天(5.5 倍),顿河为 45 毫米/天(6.3 倍),第聂伯河流域为 39 毫米/天(现代值的 8 倍)。总体而言,第聂伯河流域比顿河和伏尔加河流域干燥,这与现代湿度分布十分吻合。同时,第聂伯河流域的最西部在过去相对湿润,从过去到现代湿度的下降幅度大于东部和中部地区。这些结果与主要基于气候模型和古生物学数据得出的欧洲在 MIS 2 期间气候寒冷干燥的普遍观点相矛盾,原因在于古气候重建主要是针对 LGM 时代(23-20 ka BP)进行的。在东欧平原,对公元前 18-14 千年这一时期的研究相当少。我们的古气候学和古水文重建结果表明,与现在相比,晚全冰期和晚冰期前半期的特点是降水量和河流排水量急剧增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrological Regime of Rivers in the Periglacial Zone of the East European Plain in the Late MIS 2
At the end of the Pleniglacial and the first half of the Late Glacial period, approximately between 18 and 14 ka BP, rivers of the central and southern parts of the East European Plain had channels up to 10 times as large as the present day channels of the same rivers. These ancient channels, called large meandering palaeochannels, are widespread in river floodplains and low terraces. The hydrological regime of these large rivers is of great interest in terms of the palaeoclimatology of the late Marine Isotope Stage 2 (MIS 2). In this study, we aimed at quantitative estimation of maximum flood discharges of rivers in the Dnepr, Don and Volga basins in the late MIS 2. To approach this, we used massive measurements of the morphometric characteristics of large palaeochannels on topographic maps and remote sensing data—palaeochannel width, meander wavelength and their relationships with river flow parameters. The runoff depth of the maximum flood, which corresponds to the maximum depth of daily snow thaw during the snowmelt period, was obtained for unit basins with an area of <1000 km2. The mean value for the southern megaslope of the East European Plain was 44.2 mm/day (6 times the modern value), with 46 mm/day for the Volga River (5.5 times), 45 mm/day (6.3 times) for the Don River and 39 mm/day (8 times the modern value) for the Dnepr River basins. In general, the Dnepr basin was drier than the Don and Volga basins, which corresponds well to the modern distribution of humidity. At the same time, the westernmost part of the Dnepr River basin was relatively wet in the past, and the decrease in humidity from the past to the modern situation was greater there than in the eastern and central regions. The obtained results contradict the prevailing ideas, based mainly on climatic modeling and palynological data, that the climate of Europe was cold and dry during MIS 2. The reason is that palaeoclimatic reconstructions were made predominantly for the LGM epoch (23–20 ka BP). On the East European Plain, the interval 18–14 ka BP is rather poorly studied. Our results of paleoclimatological and palaeohydrological reconstructions showed that the Late Pleniglacial and the first half of the Late Glacial period was characterized by a dramatic increase in precipitation and river discharge relative to the present day.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quaternary
Quaternary GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.30
自引率
4.30%
发文量
44
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信