单机迟到问题最佳分解条件的若干特性

Jaideep T. Naidu
{"title":"单机迟到问题最佳分解条件的若干特性","authors":"Jaideep T. Naidu","doi":"10.33423/ajm.v24i2.7107","DOIUrl":null,"url":null,"abstract":"We consider the well-known optimal decomposition algorithm for the tardiness problem. The algorithm presents conditions which determine the positions a job could occupy in an optimal sequence. This resulted in optimal solutions for up to 100 jobs. We analyze these conditions and present simplified conditions. We then study a more recent Rule which when combined with these conditions resulted in optimal solutions for up to 500 jobs. We present several properties under which this recent rule is satisfied. We provide mathematical proofs for our properties. We believe that our study will enable more theoretical research in this field and will eventually enable optimal solutions for very large job sets.","PeriodicalId":512571,"journal":{"name":"American Journal of Management","volume":"124 32","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Properties of the Optimal Decomposition Conditions for the Single Machine Tardiness Problem\",\"authors\":\"Jaideep T. Naidu\",\"doi\":\"10.33423/ajm.v24i2.7107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the well-known optimal decomposition algorithm for the tardiness problem. The algorithm presents conditions which determine the positions a job could occupy in an optimal sequence. This resulted in optimal solutions for up to 100 jobs. We analyze these conditions and present simplified conditions. We then study a more recent Rule which when combined with these conditions resulted in optimal solutions for up to 500 jobs. We present several properties under which this recent rule is satisfied. We provide mathematical proofs for our properties. We believe that our study will enable more theoretical research in this field and will eventually enable optimal solutions for very large job sets.\",\"PeriodicalId\":512571,\"journal\":{\"name\":\"American Journal of Management\",\"volume\":\"124 32\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33423/ajm.v24i2.7107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33423/ajm.v24i2.7107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了针对迟到问题的著名最优分解算法。该算法提出了一些条件,以确定一项工作在最佳序列中可以占据的位置。这为多达 100 项工作提供了最优解。我们对这些条件进行了分析,并提出了简化条件。然后,我们研究了一种最新的规则,该规则与这些条件相结合,最多可为 500 份工作提供最优解。我们提出了满足这一最新规则的几个特性。我们为这些特性提供了数学证明。我们相信,我们的研究将促进该领域更多的理论研究,并最终实现超大作业集的最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Properties of the Optimal Decomposition Conditions for the Single Machine Tardiness Problem
We consider the well-known optimal decomposition algorithm for the tardiness problem. The algorithm presents conditions which determine the positions a job could occupy in an optimal sequence. This resulted in optimal solutions for up to 100 jobs. We analyze these conditions and present simplified conditions. We then study a more recent Rule which when combined with these conditions resulted in optimal solutions for up to 500 jobs. We present several properties under which this recent rule is satisfied. We provide mathematical proofs for our properties. We believe that our study will enable more theoretical research in this field and will eventually enable optimal solutions for very large job sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信