模拟云存储异构对高性能计算应用性能的影响

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Jack D. Marquez, Oscar H. Mondragon
{"title":"模拟云存储异构对高性能计算应用性能的影响","authors":"Jack D. Marquez, Oscar H. Mondragon","doi":"10.3390/computation12070150","DOIUrl":null,"url":null,"abstract":"Moving high-performance computing (HPC) applications from HPC clusters to cloud computing clusters, also known as the HPC cloud, has recently been proposed by the HPC research community. Migrating these applications from the former environment to the latter can have an important impact on their performance, due to the different technologies used and the suboptimal use and configuration of cloud resources such as heterogeneous storage. Probabilistic models can be applied to predict the performance of these applications and to optimise them for the new system. Modelling the performance in the HPC cloud of applications that use heterogeneous storage is a difficult task, due to the variations in performance. This paper presents a novel model based on Extreme Value Theory (EVT) for the analysis, characterisation and prediction of the performance of HPC applications that use heterogeneous storage technologies in the cloud and high-performance distributed parallel file systems. Unlike standard approaches, our model focuses on extreme values, capturing the true variability and potential bottlenecks in storage performance. Our model is validated using return level analysis to study the performance of representative scientific benchmarks running on heterogeneous cloud storage at a large scale and gives prediction errors of less than 7%.","PeriodicalId":52148,"journal":{"name":"Computation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling the Impact of Cloud Storage Heterogeneity on HPC Application Performance\",\"authors\":\"Jack D. Marquez, Oscar H. Mondragon\",\"doi\":\"10.3390/computation12070150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Moving high-performance computing (HPC) applications from HPC clusters to cloud computing clusters, also known as the HPC cloud, has recently been proposed by the HPC research community. Migrating these applications from the former environment to the latter can have an important impact on their performance, due to the different technologies used and the suboptimal use and configuration of cloud resources such as heterogeneous storage. Probabilistic models can be applied to predict the performance of these applications and to optimise them for the new system. Modelling the performance in the HPC cloud of applications that use heterogeneous storage is a difficult task, due to the variations in performance. This paper presents a novel model based on Extreme Value Theory (EVT) for the analysis, characterisation and prediction of the performance of HPC applications that use heterogeneous storage technologies in the cloud and high-performance distributed parallel file systems. Unlike standard approaches, our model focuses on extreme values, capturing the true variability and potential bottlenecks in storage performance. Our model is validated using return level analysis to study the performance of representative scientific benchmarks running on heterogeneous cloud storage at a large scale and gives prediction errors of less than 7%.\",\"PeriodicalId\":52148,\"journal\":{\"name\":\"Computation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computation12070150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computation12070150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

最近,高性能计算研究界提出了将高性能计算(HPC)应用从HPC集群迁移到云计算集群(也称为HPC云)的建议。由于使用的技术不同,以及云资源(如异构存储)的次优使用和配置,将这些应用从前一种环境迁移到后一种环境会对其性能产生重要影响。概率模型可用于预测这些应用的性能,并针对新系统优化这些应用。由于性能存在差异,在高性能计算云中为使用异构存储的应用程序建立性能模型是一项艰巨的任务。本文提出了一种基于极值理论(EVT)的新型模型,用于分析、描述和预测在云和高性能分布式并行文件系统中使用异构存储技术的高性能计算应用程序的性能。与标准方法不同,我们的模型关注极值,捕捉存储性能的真实变化和潜在瓶颈。我们的模型通过返回级分析进行验证,研究了大规模异构云存储上运行的代表性科学基准的性能,预测误差小于 7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling the Impact of Cloud Storage Heterogeneity on HPC Application Performance
Moving high-performance computing (HPC) applications from HPC clusters to cloud computing clusters, also known as the HPC cloud, has recently been proposed by the HPC research community. Migrating these applications from the former environment to the latter can have an important impact on their performance, due to the different technologies used and the suboptimal use and configuration of cloud resources such as heterogeneous storage. Probabilistic models can be applied to predict the performance of these applications and to optimise them for the new system. Modelling the performance in the HPC cloud of applications that use heterogeneous storage is a difficult task, due to the variations in performance. This paper presents a novel model based on Extreme Value Theory (EVT) for the analysis, characterisation and prediction of the performance of HPC applications that use heterogeneous storage technologies in the cloud and high-performance distributed parallel file systems. Unlike standard approaches, our model focuses on extreme values, capturing the true variability and potential bottlenecks in storage performance. Our model is validated using return level analysis to study the performance of representative scientific benchmarks running on heterogeneous cloud storage at a large scale and gives prediction errors of less than 7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computation
Computation Mathematics-Applied Mathematics
CiteScore
3.50
自引率
4.50%
发文量
201
审稿时长
8 weeks
期刊介绍: Computation a journal of computational science and engineering. Topics: computational biology, including, but not limited to: bioinformatics mathematical modeling, simulation and prediction of nucleic acid (DNA/RNA) and protein sequences, structure and functions mathematical modeling of pathways and genetic interactions neuroscience computation including neural modeling, brain theory and neural networks computational chemistry, including, but not limited to: new theories and methodology including their applications in molecular dynamics computation of electronic structure density functional theory designing and characterization of materials with computation method computation in engineering, including, but not limited to: new theories, methodology and the application of computational fluid dynamics (CFD) optimisation techniques and/or application of optimisation to multidisciplinary systems system identification and reduced order modelling of engineering systems parallel algorithms and high performance computing in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信