具有多重临界非线性和雷利希势的椭圆方程的解的存在性

W. Zhou
{"title":"具有多重临界非线性和雷利希势的椭圆方程的解的存在性","authors":"W. Zhou","doi":"10.56557/ajomcor/2024/v31i38782","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the Biharmonic problem that involves numerous critical non-linearities and Rellich potentials.\n                                            \\(\\Delta^2 u-\\mu_1 \\frac{u}{|x|^4}-\\mu_2 \\frac{u}{|x-a|^4}=|u|^{2^*-2} u+\\frac{|u|^{2^*(s)-2} u}{|x-a|^s} \\quad \\text { in } \\Omega \\backslash\\{0, a\\},\\)\nwhere \\(\\Omega\\) is a smooth open bounded domain in \\(\\mathbb{R}^N(N \\geq 5)\\), \\(2^*(s)\\)=\\(\\frac{2(N-s)}{N-4}\\), 0","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"101 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Existence of Solutions to Elliptic Equations with Multiple Critical Nonlinearities and Rellich Potentials\",\"authors\":\"W. Zhou\",\"doi\":\"10.56557/ajomcor/2024/v31i38782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the Biharmonic problem that involves numerous critical non-linearities and Rellich potentials.\\n                                            \\\\(\\\\Delta^2 u-\\\\mu_1 \\\\frac{u}{|x|^4}-\\\\mu_2 \\\\frac{u}{|x-a|^4}=|u|^{2^*-2} u+\\\\frac{|u|^{2^*(s)-2} u}{|x-a|^s} \\\\quad \\\\text { in } \\\\Omega \\\\backslash\\\\{0, a\\\\},\\\\)\\nwhere \\\\(\\\\Omega\\\\) is a smooth open bounded domain in \\\\(\\\\mathbb{R}^N(N \\\\geq 5)\\\\), \\\\(2^*(s)\\\\)=\\\\(\\\\frac{2(N-s)}{N-4}\\\\), 0\",\"PeriodicalId\":200824,\"journal\":{\"name\":\"Asian Journal of Mathematics and Computer Research\",\"volume\":\"101 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Journal of Mathematics and Computer Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56557/ajomcor/2024/v31i38782\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2024/v31i38782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了涉及众多临界非线性和 Rellich 势的比谐波问题。 \(\Delta^2 u-\mu_1 \frac{u}{|x|^4}-\mu_2 \frac{u}{|x-a|^4}=|u|^{2^*-2} u+\frac{|u|^{2^*(s)-2} u}{|x-a|^s}\quad \text { in }\Omega \backslash\{0, a\},\)where \(\Omega\) is a smooth open bounded domain in \(\mathbb{R}^^N(N \geq 5)\), \(2^*(s)\)=\(\frac{2(N-s)}{N-4}\), 0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Existence of Solutions to Elliptic Equations with Multiple Critical Nonlinearities and Rellich Potentials
In this paper, we investigate the Biharmonic problem that involves numerous critical non-linearities and Rellich potentials.                                             \(\Delta^2 u-\mu_1 \frac{u}{|x|^4}-\mu_2 \frac{u}{|x-a|^4}=|u|^{2^*-2} u+\frac{|u|^{2^*(s)-2} u}{|x-a|^s} \quad \text { in } \Omega \backslash\{0, a\},\) where \(\Omega\) is a smooth open bounded domain in \(\mathbb{R}^N(N \geq 5)\), \(2^*(s)\)=\(\frac{2(N-s)}{N-4}\), 0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信