涉及广义卡普托分数导数的具有时变延迟的分数模糊微分方程的有限时间稳定性分析

IF 0.9 Q2 MATHEMATICS
Lai Van Phut
{"title":"涉及广义卡普托分数导数的具有时变延迟的分数模糊微分方程的有限时间稳定性分析","authors":"Lai Van Phut","doi":"10.1007/s13370-024-01201-9","DOIUrl":null,"url":null,"abstract":"<div><p>The main results of this paper are to discuss the primary results of fuzzy differential equations with time-varying delay (FDDEs) via the generalized Caputo fractional derivative. We establish the existence of a unique solution for FDDEs using the method of steps and the generalized Gronwall inequality. Sufficient conditions are proposed to ensure the finite-time stability (FTS) of FDDEs. Finally, we explore specific examples to illustrate and reinforce the results obtained.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-time stability analysis of fractional fuzzy differential equations with time-varying delay involving the generalized Caputo fractional derivative\",\"authors\":\"Lai Van Phut\",\"doi\":\"10.1007/s13370-024-01201-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The main results of this paper are to discuss the primary results of fuzzy differential equations with time-varying delay (FDDEs) via the generalized Caputo fractional derivative. We establish the existence of a unique solution for FDDEs using the method of steps and the generalized Gronwall inequality. Sufficient conditions are proposed to ensure the finite-time stability (FTS) of FDDEs. Finally, we explore specific examples to illustrate and reinforce the results obtained.</p></div>\",\"PeriodicalId\":46107,\"journal\":{\"name\":\"Afrika Matematika\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Afrika Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13370-024-01201-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01201-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要成果是通过广义卡普托分数导数讨论具有时变延迟的模糊微分方程(FDDEs)的主要结果。我们利用阶次法和广义 Gronwall 不等式建立了 FDDE 的唯一解的存在性。我们还提出了确保 FDDEs 有限时间稳定性 (FTS) 的充分条件。最后,我们探讨了具体的例子来说明和巩固所获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-time stability analysis of fractional fuzzy differential equations with time-varying delay involving the generalized Caputo fractional derivative

The main results of this paper are to discuss the primary results of fuzzy differential equations with time-varying delay (FDDEs) via the generalized Caputo fractional derivative. We establish the existence of a unique solution for FDDEs using the method of steps and the generalized Gronwall inequality. Sufficient conditions are proposed to ensure the finite-time stability (FTS) of FDDEs. Finally, we explore specific examples to illustrate and reinforce the results obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信