Peng Chen, Tianci Huang, Bei Wu, Huaiyuan Qian, Fangping Xie, Baohua Liu, Dawei Liu, Xu Li
{"title":"考虑料斗与输送机耦合参数的螺旋输送机卸料率建模","authors":"Peng Chen, Tianci Huang, Bei Wu, Huaiyuan Qian, Fangping Xie, Baohua Liu, Dawei Liu, Xu Li","doi":"10.3390/agriculture14071203","DOIUrl":null,"url":null,"abstract":"Developing a flow rate model for the screw feeder and optimizing discharge performance are crucial for achieving automated intelligent precision feeding. This study constructs a mass flow rate model for screw conveyors, considering the coupled structural parameters of the hopper and screw conveyor. The model is developed using single-factor tests and central composite design (CCD) response surface tests and is validated through actual discharge tests. Results indicate that the discharge rate in the hopper–screw conveyor system is primarily influenced by the screw conveyor itself. Among the structural parameters, the hopper inclination angle and the hopper discharge opening length significantly affect the filling coefficient. Validation tests show an average error of 6.8% between the predicted and simulated mass flow rates and 5.0% with the actual mass flow rate, demonstrating the model’s high precision and accuracy.","PeriodicalId":7447,"journal":{"name":"Agriculture","volume":"76 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the Discharge Rate of a Screw Conveyor Considering Hopper–Conveyor Coupling Parameters\",\"authors\":\"Peng Chen, Tianci Huang, Bei Wu, Huaiyuan Qian, Fangping Xie, Baohua Liu, Dawei Liu, Xu Li\",\"doi\":\"10.3390/agriculture14071203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Developing a flow rate model for the screw feeder and optimizing discharge performance are crucial for achieving automated intelligent precision feeding. This study constructs a mass flow rate model for screw conveyors, considering the coupled structural parameters of the hopper and screw conveyor. The model is developed using single-factor tests and central composite design (CCD) response surface tests and is validated through actual discharge tests. Results indicate that the discharge rate in the hopper–screw conveyor system is primarily influenced by the screw conveyor itself. Among the structural parameters, the hopper inclination angle and the hopper discharge opening length significantly affect the filling coefficient. Validation tests show an average error of 6.8% between the predicted and simulated mass flow rates and 5.0% with the actual mass flow rate, demonstrating the model’s high precision and accuracy.\",\"PeriodicalId\":7447,\"journal\":{\"name\":\"Agriculture\",\"volume\":\"76 18\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/agriculture14071203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriculture14071203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Modeling the Discharge Rate of a Screw Conveyor Considering Hopper–Conveyor Coupling Parameters
Developing a flow rate model for the screw feeder and optimizing discharge performance are crucial for achieving automated intelligent precision feeding. This study constructs a mass flow rate model for screw conveyors, considering the coupled structural parameters of the hopper and screw conveyor. The model is developed using single-factor tests and central composite design (CCD) response surface tests and is validated through actual discharge tests. Results indicate that the discharge rate in the hopper–screw conveyor system is primarily influenced by the screw conveyor itself. Among the structural parameters, the hopper inclination angle and the hopper discharge opening length significantly affect the filling coefficient. Validation tests show an average error of 6.8% between the predicted and simulated mass flow rates and 5.0% with the actual mass flow rate, demonstrating the model’s high precision and accuracy.
AgricultureAgricultural and Biological Sciences-Horticulture
CiteScore
1.90
自引率
0.00%
发文量
4
审稿时长
11 weeks
期刊介绍:
The Agriculture (Poľnohospodárstvo) is a peer-reviewed international journal that publishes mainly original research papers. The journal examines various aspects of research and is devoted to the publication of papers dealing with the following subjects: plant nutrition, protection, breeding, genetics and biotechnology, quality of plant products, grassland, mountain agriculture and environment, soil science and conservation, mechanization and economics of plant production and other spheres of plant science. Journal is published 4 times per year.