基于参数优化 VMD 和改进型 Bilstm 的滚珠丝杠元动作单元磨损状态识别技术

Hong-yu Ge, Cangfu Wang, Anxiang Guo, Chuanwei Zhang, Zhan Zhao, Manzhi Yang
{"title":"基于参数优化 VMD 和改进型 Bilstm 的滚珠丝杠元动作单元磨损状态识别技术","authors":"Hong-yu Ge, Cangfu Wang, Anxiang Guo, Chuanwei Zhang, Zhan Zhao, Manzhi Yang","doi":"10.17531/ein/191461","DOIUrl":null,"url":null,"abstract":"In this paper, a novel neural network based on parameter optimization Variational Mode Decomposition (VMD) and improved bidirectional long short-term memory (BiLSTM) is proposed. Wear state recognition method of ball screw element action unit component based on Bilstm. Firstly, Tent chaotic map and adaptive sine cosine Algorithm were used to improve the improved Northern Goshawk Optimisation Algorithm (INGO) to verify the superiority of INGO algorithm and determine the optimal parameter combination of VMD. Secondly, INGO-VMD was used to decompose the collected vibration signals and calculate the correlation of IMF components, and the multi-feature information matrix that could characterize the wear state change of the lead screw was constructed after retaining the IMF components with large correlation. Finally, the divided feature information matrix and labels were input into the Bilstm network model of Bayesian optimization (BO) for training, and the Softmax classifier was used to classify and identify the wear state category.","PeriodicalId":508934,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"5 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wear state identification of ball screw meta action unit based on parameter optimization VMD and improved Bilstm\",\"authors\":\"Hong-yu Ge, Cangfu Wang, Anxiang Guo, Chuanwei Zhang, Zhan Zhao, Manzhi Yang\",\"doi\":\"10.17531/ein/191461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel neural network based on parameter optimization Variational Mode Decomposition (VMD) and improved bidirectional long short-term memory (BiLSTM) is proposed. Wear state recognition method of ball screw element action unit component based on Bilstm. Firstly, Tent chaotic map and adaptive sine cosine Algorithm were used to improve the improved Northern Goshawk Optimisation Algorithm (INGO) to verify the superiority of INGO algorithm and determine the optimal parameter combination of VMD. Secondly, INGO-VMD was used to decompose the collected vibration signals and calculate the correlation of IMF components, and the multi-feature information matrix that could characterize the wear state change of the lead screw was constructed after retaining the IMF components with large correlation. Finally, the divided feature information matrix and labels were input into the Bilstm network model of Bayesian optimization (BO) for training, and the Softmax classifier was used to classify and identify the wear state category.\",\"PeriodicalId\":508934,\"journal\":{\"name\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"volume\":\"5 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/191461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/191461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于参数优化变异模式分解(VMD)和改进的双向长短期记忆(BiLSTM)的新型神经网络。基于 Bilstm 的滚珠丝杠元件动作单元组件磨损状态识别方法。首先,利用 Tent 混沌图和自适应正弦余弦算法改进了改进型北高鹰优化算法(INGO),验证了 INGO 算法的优越性,并确定了 VMD 的最优参数组合。其次,利用 INGO-VMD 对采集到的振动信号进行分解,并计算 IMF 分量的相关性,在保留相关性较大的 IMF 分量后,构建了能够表征导螺杆磨损状态变化的多特征信息矩阵。最后,将划分的特征信息矩阵和标签输入贝叶斯优化(BO)的 Bilstm 网络模型进行训练,并使用 Softmax 分类器对磨损状态类别进行分类和识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wear state identification of ball screw meta action unit based on parameter optimization VMD and improved Bilstm
In this paper, a novel neural network based on parameter optimization Variational Mode Decomposition (VMD) and improved bidirectional long short-term memory (BiLSTM) is proposed. Wear state recognition method of ball screw element action unit component based on Bilstm. Firstly, Tent chaotic map and adaptive sine cosine Algorithm were used to improve the improved Northern Goshawk Optimisation Algorithm (INGO) to verify the superiority of INGO algorithm and determine the optimal parameter combination of VMD. Secondly, INGO-VMD was used to decompose the collected vibration signals and calculate the correlation of IMF components, and the multi-feature information matrix that could characterize the wear state change of the lead screw was constructed after retaining the IMF components with large correlation. Finally, the divided feature information matrix and labels were input into the Bilstm network model of Bayesian optimization (BO) for training, and the Softmax classifier was used to classify and identify the wear state category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信