自然场景图像中印度文字的识别与分类

Suryosnata Behera, Dr.SatyaRanjan Pattanaik
{"title":"自然场景图像中印度文字的识别与分类","authors":"Suryosnata Behera, Dr.SatyaRanjan Pattanaik","doi":"10.55041/ijsrem36661","DOIUrl":null,"url":null,"abstract":"In the field of computer vision and document analysis, the identification and categorization of Indian scripts in natural scene images pose a difficult yet crucial challenge. The variety of characters and intricate writing styles in Indian scripts require reliable solutions for precise identification under different environmental conditions. This study presents a novel CNN model designed for identifying scripts in Indian multilingual document images captured by cameras. Experimental evaluations of the model's performance were conducted with two regional languages (Odia and Telugu) and one national language (Hindi). The average accuracy in script recognition for the three language combinations is 95.66%, with Odia achieving 99.00%, Hindi 90.33%, and Telugu 98.12%. The model achieved the highest accuracy in recognition. The model achieved the highest accuracy in recognition Keywords: Text Recognition, Image Augmentation, CNN, LSTM, VGG, ResNet, DenseNet, Datasets, Natural Images","PeriodicalId":504501,"journal":{"name":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","volume":"14 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition And Classification of Indian Scripts in Natural Scene Images\",\"authors\":\"Suryosnata Behera, Dr.SatyaRanjan Pattanaik\",\"doi\":\"10.55041/ijsrem36661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of computer vision and document analysis, the identification and categorization of Indian scripts in natural scene images pose a difficult yet crucial challenge. The variety of characters and intricate writing styles in Indian scripts require reliable solutions for precise identification under different environmental conditions. This study presents a novel CNN model designed for identifying scripts in Indian multilingual document images captured by cameras. Experimental evaluations of the model's performance were conducted with two regional languages (Odia and Telugu) and one national language (Hindi). The average accuracy in script recognition for the three language combinations is 95.66%, with Odia achieving 99.00%, Hindi 90.33%, and Telugu 98.12%. The model achieved the highest accuracy in recognition. The model achieved the highest accuracy in recognition Keywords: Text Recognition, Image Augmentation, CNN, LSTM, VGG, ResNet, DenseNet, Datasets, Natural Images\",\"PeriodicalId\":504501,\"journal\":{\"name\":\"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT\",\"volume\":\"14 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55041/ijsrem36661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55041/ijsrem36661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在计算机视觉和文档分析领域,自然场景图像中印度文字的识别和分类是一项艰巨而又关键的挑战。印度文字的字符种类繁多,书写风格错综复杂,需要可靠的解决方案才能在不同环境条件下进行精确识别。本研究提出了一种新颖的 CNN 模型,用于识别摄像头拍摄的印度多语言文档图像中的脚本。该模型的性能实验评估使用了两种地区语言(奥迪亚语和泰卢固语)和一种国家语言(印地语)。三种语言组合的文字识别平均准确率为 95.66%,其中奥蒂亚语为 99.00%,印地语为 90.33%,泰卢固语为 98.12%。该模型的识别准确率最高。该模型的识别准确率最高 关键词文本识别、图像增强、CNN、LSTM、VGG、ResNet、DenseNet、数据集、自然图像
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition And Classification of Indian Scripts in Natural Scene Images
In the field of computer vision and document analysis, the identification and categorization of Indian scripts in natural scene images pose a difficult yet crucial challenge. The variety of characters and intricate writing styles in Indian scripts require reliable solutions for precise identification under different environmental conditions. This study presents a novel CNN model designed for identifying scripts in Indian multilingual document images captured by cameras. Experimental evaluations of the model's performance were conducted with two regional languages (Odia and Telugu) and one national language (Hindi). The average accuracy in script recognition for the three language combinations is 95.66%, with Odia achieving 99.00%, Hindi 90.33%, and Telugu 98.12%. The model achieved the highest accuracy in recognition. The model achieved the highest accuracy in recognition Keywords: Text Recognition, Image Augmentation, CNN, LSTM, VGG, ResNet, DenseNet, Datasets, Natural Images
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信