{"title":"对黑水和厨余进行源头分离和厌氧协同消化,以生产沼气和回收营养物质","authors":"Donya Kamravamanesh, M. Kokko","doi":"10.2166/wst.2024.251","DOIUrl":null,"url":null,"abstract":"\n \n Anaerobic co-digestion of source-separated blackwater (BW) and food and kitchen waste (FW) offers decentralized circular economy solutions by enabling local production of biogas and nutrient-rich byproducts. In this study, a 2 m3 pilot-scale continuously stirred tank reactor (CSTR) operated under mesophilic conditions was utilized for co-digestion of BW and FW. The process obtained a CH4 yield of 0.7 ± 0.2 m3/kg influent-volatile solid (VS), reaching a maximum yield of 1.1 ± 0.1 m3/kg influent-VS, with an average organic loading rate of 0.6 ± 0.1 kg-VS/m3/d and HRT of 25 days. The CH4 production rate averaged 0.4 ± 0.1 m3/m3/d, peaking at 0.6 ± 0.1 m3/m3/d. Treatment of digestate through flocculation followed by sedimentation recovered over 90% of ammonium nitrogen and potassium, and 80–85% of total phosphorus in the liquid fraction. This nutrient-rich liquid was used to cultivate Chlorella vulgaris, achieving a biomass concentration of 1.2 ± 0.1 g/L and 85 ± 3% and 78 ± 5% ammonium nitrogen and phosphorus removal efficiency, respectively. These findings not only highlight the feasibility of anaerobic co-digestion of source-separated BW and FW in local biogas production but also demonstrate the potential of microalgae cultivation as a sustainable approach to converting digestate into nutrient-rich algae biomass.","PeriodicalId":505935,"journal":{"name":"Water Science & Technology","volume":"18 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Source separation and anaerobic co-digestion of blackwater and food waste for biogas production and nutrient recovery\",\"authors\":\"Donya Kamravamanesh, M. Kokko\",\"doi\":\"10.2166/wst.2024.251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Anaerobic co-digestion of source-separated blackwater (BW) and food and kitchen waste (FW) offers decentralized circular economy solutions by enabling local production of biogas and nutrient-rich byproducts. In this study, a 2 m3 pilot-scale continuously stirred tank reactor (CSTR) operated under mesophilic conditions was utilized for co-digestion of BW and FW. The process obtained a CH4 yield of 0.7 ± 0.2 m3/kg influent-volatile solid (VS), reaching a maximum yield of 1.1 ± 0.1 m3/kg influent-VS, with an average organic loading rate of 0.6 ± 0.1 kg-VS/m3/d and HRT of 25 days. The CH4 production rate averaged 0.4 ± 0.1 m3/m3/d, peaking at 0.6 ± 0.1 m3/m3/d. Treatment of digestate through flocculation followed by sedimentation recovered over 90% of ammonium nitrogen and potassium, and 80–85% of total phosphorus in the liquid fraction. This nutrient-rich liquid was used to cultivate Chlorella vulgaris, achieving a biomass concentration of 1.2 ± 0.1 g/L and 85 ± 3% and 78 ± 5% ammonium nitrogen and phosphorus removal efficiency, respectively. These findings not only highlight the feasibility of anaerobic co-digestion of source-separated BW and FW in local biogas production but also demonstrate the potential of microalgae cultivation as a sustainable approach to converting digestate into nutrient-rich algae biomass.\",\"PeriodicalId\":505935,\"journal\":{\"name\":\"Water Science & Technology\",\"volume\":\"18 7\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2024.251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Source separation and anaerobic co-digestion of blackwater and food waste for biogas production and nutrient recovery
Anaerobic co-digestion of source-separated blackwater (BW) and food and kitchen waste (FW) offers decentralized circular economy solutions by enabling local production of biogas and nutrient-rich byproducts. In this study, a 2 m3 pilot-scale continuously stirred tank reactor (CSTR) operated under mesophilic conditions was utilized for co-digestion of BW and FW. The process obtained a CH4 yield of 0.7 ± 0.2 m3/kg influent-volatile solid (VS), reaching a maximum yield of 1.1 ± 0.1 m3/kg influent-VS, with an average organic loading rate of 0.6 ± 0.1 kg-VS/m3/d and HRT of 25 days. The CH4 production rate averaged 0.4 ± 0.1 m3/m3/d, peaking at 0.6 ± 0.1 m3/m3/d. Treatment of digestate through flocculation followed by sedimentation recovered over 90% of ammonium nitrogen and potassium, and 80–85% of total phosphorus in the liquid fraction. This nutrient-rich liquid was used to cultivate Chlorella vulgaris, achieving a biomass concentration of 1.2 ± 0.1 g/L and 85 ± 3% and 78 ± 5% ammonium nitrogen and phosphorus removal efficiency, respectively. These findings not only highlight the feasibility of anaerobic co-digestion of source-separated BW and FW in local biogas production but also demonstrate the potential of microalgae cultivation as a sustainable approach to converting digestate into nutrient-rich algae biomass.