评估 Llama2 大语言模型在分析经济文本中的有效性:使用不同数据源的比较分析

Zhengqi Han
{"title":"评估 Llama2 大语言模型在分析经济文本中的有效性:使用不同数据源的比较分析","authors":"Zhengqi Han","doi":"10.54097/jx198j77","DOIUrl":null,"url":null,"abstract":"This study investigates the effectiveness of the open-source llama2 large language model in analyzing various types of economic texts. We employ a comparative analysis approach, utilizing data from four diverse sources: Federal Reserve Economic Data (FRED), Edgar (EDGAR) Database from the U.S. Securities and Exchange Commission (SEC), International Monetary Fund (IMF) Data, and World Bank Open Data. We focus on the performance of llama2 for specific tasks like sentiment analysis, entity recognition, and topic modeling. The findings will contribute to understanding the potential and limitations of using large language models for extracting insights from diverse economic data sources.","PeriodicalId":336504,"journal":{"name":"Highlights in Business, Economics and Management","volume":"24 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating The Effectiveness of The Llama2 Large Language Model in Analyzing Economic Texts: A Comparative Analysis Using Diverse Data Sources\",\"authors\":\"Zhengqi Han\",\"doi\":\"10.54097/jx198j77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the effectiveness of the open-source llama2 large language model in analyzing various types of economic texts. We employ a comparative analysis approach, utilizing data from four diverse sources: Federal Reserve Economic Data (FRED), Edgar (EDGAR) Database from the U.S. Securities and Exchange Commission (SEC), International Monetary Fund (IMF) Data, and World Bank Open Data. We focus on the performance of llama2 for specific tasks like sentiment analysis, entity recognition, and topic modeling. The findings will contribute to understanding the potential and limitations of using large language models for extracting insights from diverse economic data sources.\",\"PeriodicalId\":336504,\"journal\":{\"name\":\"Highlights in Business, Economics and Management\",\"volume\":\"24 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Highlights in Business, Economics and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54097/jx198j77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Highlights in Business, Economics and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54097/jx198j77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了开源 llama2 大语言模型在分析各类经济文本时的有效性。我们采用了比较分析方法,利用了四个不同来源的数据:美联储经济数据 (FRED)、美国证券交易委员会 (SEC) 的埃德加 (EDGAR) 数据库、国际货币基金组织 (IMF) 数据和世界银行开放数据。我们重点关注 llama2 在情感分析、实体识别和主题建模等特定任务中的表现。研究结果将有助于理解使用大型语言模型从各种经济数据源中提取洞察力的潜力和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating The Effectiveness of The Llama2 Large Language Model in Analyzing Economic Texts: A Comparative Analysis Using Diverse Data Sources
This study investigates the effectiveness of the open-source llama2 large language model in analyzing various types of economic texts. We employ a comparative analysis approach, utilizing data from four diverse sources: Federal Reserve Economic Data (FRED), Edgar (EDGAR) Database from the U.S. Securities and Exchange Commission (SEC), International Monetary Fund (IMF) Data, and World Bank Open Data. We focus on the performance of llama2 for specific tasks like sentiment analysis, entity recognition, and topic modeling. The findings will contribute to understanding the potential and limitations of using large language models for extracting insights from diverse economic data sources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信