关于基于贝尔的阿波斯托尔-伯努利型多项式的性质和单项式原理

W. Ramírez, C. Cesarano, S. Wani, S. Yousuf, D. Bedoya
{"title":"关于基于贝尔的阿波斯托尔-伯努利型多项式的性质和单项式原理","authors":"W. Ramírez, C. Cesarano, S. Wani, S. Yousuf, D. Bedoya","doi":"10.15330/cmp.16.2.379-390","DOIUrl":null,"url":null,"abstract":"This article investigates the properties and monomiality principle within Bell-based Apostol-Bernoulli-type polynomials. Beginning with the establishment of a generating function, the study proceeds to derive explicit expressions for these polynomials, providing insight into their structural characteristics. Summation formulae are then derived, facilitating efficient computation and manipulation. Implicit formulae are also examined, revealing underlying patterns and relationships. Through the lens of the monomiality principle, connections between various polynomial aspects are elucidated, uncovering hidden symmetries and algebraic properties. Moreover, connection formulae are derived, enabling seamless transitions between different polynomial representations. This analysis contributes to a comprehensive understanding of Bell-based Apostol-Bernoulli-type polynomials, offering valuable insights into their mathematical nature and applications.","PeriodicalId":502864,"journal":{"name":"Carpathian Mathematical Publications","volume":"21 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About properties and the monomiality principle of Bell-based Apostol-Bernoulli-type polynomials\",\"authors\":\"W. Ramírez, C. Cesarano, S. Wani, S. Yousuf, D. Bedoya\",\"doi\":\"10.15330/cmp.16.2.379-390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the properties and monomiality principle within Bell-based Apostol-Bernoulli-type polynomials. Beginning with the establishment of a generating function, the study proceeds to derive explicit expressions for these polynomials, providing insight into their structural characteristics. Summation formulae are then derived, facilitating efficient computation and manipulation. Implicit formulae are also examined, revealing underlying patterns and relationships. Through the lens of the monomiality principle, connections between various polynomial aspects are elucidated, uncovering hidden symmetries and algebraic properties. Moreover, connection formulae are derived, enabling seamless transitions between different polynomial representations. This analysis contributes to a comprehensive understanding of Bell-based Apostol-Bernoulli-type polynomials, offering valuable insights into their mathematical nature and applications.\",\"PeriodicalId\":502864,\"journal\":{\"name\":\"Carpathian Mathematical Publications\",\"volume\":\"21 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carpathian Mathematical Publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15330/cmp.16.2.379-390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.16.2.379-390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了基于贝尔的阿波斯托-伯努利型多项式的性质和单项式原理。研究从建立生成函数开始,进而推导出这些多项式的明确表达式,深入探讨其结构特征。然后推导出求和公式,从而提高计算和操作的效率。此外,还研究了隐式,揭示了潜在的模式和关系。通过单项式原理的视角,阐明多项式各方面之间的联系,揭示隐藏的对称性和代数特性。此外,还推导出了连接公式,实现了不同多项式表示之间的无缝转换。这一分析有助于全面理解基于贝尔的阿波斯托-伯努利型多项式,为其数学性质和应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About properties and the monomiality principle of Bell-based Apostol-Bernoulli-type polynomials
This article investigates the properties and monomiality principle within Bell-based Apostol-Bernoulli-type polynomials. Beginning with the establishment of a generating function, the study proceeds to derive explicit expressions for these polynomials, providing insight into their structural characteristics. Summation formulae are then derived, facilitating efficient computation and manipulation. Implicit formulae are also examined, revealing underlying patterns and relationships. Through the lens of the monomiality principle, connections between various polynomial aspects are elucidated, uncovering hidden symmetries and algebraic properties. Moreover, connection formulae are derived, enabling seamless transitions between different polynomial representations. This analysis contributes to a comprehensive understanding of Bell-based Apostol-Bernoulli-type polynomials, offering valuable insights into their mathematical nature and applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信