Ayşe V. Hacinecipoğlu, Özge Demir, Metin Gençten, Y. Şahin
{"title":"一步法电化学合成二硫化钼基材料以提高超级电容器性能","authors":"Ayşe V. Hacinecipoğlu, Özge Demir, Metin Gençten, Y. Şahin","doi":"10.1149/2162-8777/ad6639","DOIUrl":null,"url":null,"abstract":"\n Molybdenum disulfide (MoS2)-based two-dimensional materials were produced in one-step at room temperature using cyclic voltammetry technique. These materials were then used as electrode materials in supercapacitors. Concentration of supporting electrolyte, precursor, and cycle number parameters, which were the factors affecting the success of the synthesis, were optimized as 0.5 M, 0.15 M,and 10 cycles, respectively. The produced MoS2-coated electrodes were characterized using spectroscopic and microscopic methods. The chemical characterizations of the produced materials were examined by X-ray photoelectron spectroscopy, X-ray diffraction diffractometry, and scanning electron microscopy-energy-dispersive X-ray analysis. Surface morphologies of the composite materials were investigated using scanning electron microscopy. Finally, the produced MoS2-based materials were used as electrode materials in supercapacitors. The produced supercapacitors were characterized using cyclic voltammetry and electrochemical impedance spectroscopy methods, and the changes in the capacitive behavior of these systems over cycles were investigated using the cyclic charge-discharge technique. The highest areal capacitance value was determined as 251 mF.cm-2 at 0.2 mA.cm-2 charge-discharge current rates in 1.0 M H2SO4 by using of MoS-AD1 as the electrode material. Capacitance retention of this electrode was over 100% after 4000 cycles.","PeriodicalId":504734,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-Step Electrochemical Synthesis of Molybdenum-Disulfide-Based Materials for Enhanced Supercapacitor Performance\",\"authors\":\"Ayşe V. Hacinecipoğlu, Özge Demir, Metin Gençten, Y. Şahin\",\"doi\":\"10.1149/2162-8777/ad6639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Molybdenum disulfide (MoS2)-based two-dimensional materials were produced in one-step at room temperature using cyclic voltammetry technique. These materials were then used as electrode materials in supercapacitors. Concentration of supporting electrolyte, precursor, and cycle number parameters, which were the factors affecting the success of the synthesis, were optimized as 0.5 M, 0.15 M,and 10 cycles, respectively. The produced MoS2-coated electrodes were characterized using spectroscopic and microscopic methods. The chemical characterizations of the produced materials were examined by X-ray photoelectron spectroscopy, X-ray diffraction diffractometry, and scanning electron microscopy-energy-dispersive X-ray analysis. Surface morphologies of the composite materials were investigated using scanning electron microscopy. Finally, the produced MoS2-based materials were used as electrode materials in supercapacitors. The produced supercapacitors were characterized using cyclic voltammetry and electrochemical impedance spectroscopy methods, and the changes in the capacitive behavior of these systems over cycles were investigated using the cyclic charge-discharge technique. The highest areal capacitance value was determined as 251 mF.cm-2 at 0.2 mA.cm-2 charge-discharge current rates in 1.0 M H2SO4 by using of MoS-AD1 as the electrode material. Capacitance retention of this electrode was over 100% after 4000 cycles.\",\"PeriodicalId\":504734,\"journal\":{\"name\":\"ECS Journal of Solid State Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Journal of Solid State Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2162-8777/ad6639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad6639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
利用循环伏安法技术,在室温下一步法制备了基于二硫化钼(MoS2)的二维材料。这些材料随后被用作超级电容器的电极材料。影响合成成功与否的因素包括支持电解质的浓度、前驱体和循环次数参数,这些参数分别优化为 0.5 M、0.15 M 和 10 个循环。利用光谱和显微镜方法对制备的 MoS2 涂层电极进行了表征。利用 X 射线光电子能谱、X 射线衍射衍射仪和扫描电子显微镜-能量色散 X 射线分析法检测了所制材料的化学特性。使用扫描电子显微镜研究了复合材料的表面形态。最后,将制备的基于 MoS2 的材料用作超级电容器的电极材料。使用循环伏安法和电化学阻抗光谱法对制备的超级电容器进行了表征,并使用循环充放电技术研究了这些系统在循环过程中的电容行为变化。使用 MoS-AD1 作为电极材料,在 1.0 M H2SO4 中以 0.2 mA.cm-2 的充放电电流速率充放电时,测定的最高等面积电容值为 251 mF.cm-2。经过 4000 次循环后,该电极的电容保持率超过 100%。
One-Step Electrochemical Synthesis of Molybdenum-Disulfide-Based Materials for Enhanced Supercapacitor Performance
Molybdenum disulfide (MoS2)-based two-dimensional materials were produced in one-step at room temperature using cyclic voltammetry technique. These materials were then used as electrode materials in supercapacitors. Concentration of supporting electrolyte, precursor, and cycle number parameters, which were the factors affecting the success of the synthesis, were optimized as 0.5 M, 0.15 M,and 10 cycles, respectively. The produced MoS2-coated electrodes were characterized using spectroscopic and microscopic methods. The chemical characterizations of the produced materials were examined by X-ray photoelectron spectroscopy, X-ray diffraction diffractometry, and scanning electron microscopy-energy-dispersive X-ray analysis. Surface morphologies of the composite materials were investigated using scanning electron microscopy. Finally, the produced MoS2-based materials were used as electrode materials in supercapacitors. The produced supercapacitors were characterized using cyclic voltammetry and electrochemical impedance spectroscopy methods, and the changes in the capacitive behavior of these systems over cycles were investigated using the cyclic charge-discharge technique. The highest areal capacitance value was determined as 251 mF.cm-2 at 0.2 mA.cm-2 charge-discharge current rates in 1.0 M H2SO4 by using of MoS-AD1 as the electrode material. Capacitance retention of this electrode was over 100% after 4000 cycles.