{"title":"歪线地震数据的基尔霍夫预叠加时间迁移","authors":"Xiangzhong Chen, Yubo Yue, Xie Yu, Wei Li","doi":"10.1093/jge/gxae079","DOIUrl":null,"url":null,"abstract":"\n Crooked-line seismic survey has been widely used in oil and gas exploration in complex areas of western China. However, due to the unconventional acquisition geometry, current migration methods cannot fully account for the characteristics of crooked-line seismic data and may lead to poorly-resolved images with inaccurate kinematics. To mitigate this problem, we present in this paper a modified Kirchhoff prestack time migration well adapted to crooked-line seismic data. We first carry out a theoretical analysis on the propagation geometry of crooked-line seismic data and demonstrate problems associated with conventional 3D traveltime-based migration. Then, we present a modified 2D migration scheme based on the projection between the actual imaging trace within the vertical plane of seismic reflections and the output imaging trace. Compared with the 3D traveltime-based migration, our method not only ensures the accuracy of imaging depth but also improves the focusing and continuity of the migrated image. We use both synthetic and real data tests to validate the correctness and effectiveness of the proposed method.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kirchhoff Prestack time migration of crooked-line seismic data\",\"authors\":\"Xiangzhong Chen, Yubo Yue, Xie Yu, Wei Li\",\"doi\":\"10.1093/jge/gxae079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Crooked-line seismic survey has been widely used in oil and gas exploration in complex areas of western China. However, due to the unconventional acquisition geometry, current migration methods cannot fully account for the characteristics of crooked-line seismic data and may lead to poorly-resolved images with inaccurate kinematics. To mitigate this problem, we present in this paper a modified Kirchhoff prestack time migration well adapted to crooked-line seismic data. We first carry out a theoretical analysis on the propagation geometry of crooked-line seismic data and demonstrate problems associated with conventional 3D traveltime-based migration. Then, we present a modified 2D migration scheme based on the projection between the actual imaging trace within the vertical plane of seismic reflections and the output imaging trace. Compared with the 3D traveltime-based migration, our method not only ensures the accuracy of imaging depth but also improves the focusing and continuity of the migrated image. We use both synthetic and real data tests to validate the correctness and effectiveness of the proposed method.\",\"PeriodicalId\":54820,\"journal\":{\"name\":\"Journal of Geophysics and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysics and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/jge/gxae079\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxae079","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Kirchhoff Prestack time migration of crooked-line seismic data
Crooked-line seismic survey has been widely used in oil and gas exploration in complex areas of western China. However, due to the unconventional acquisition geometry, current migration methods cannot fully account for the characteristics of crooked-line seismic data and may lead to poorly-resolved images with inaccurate kinematics. To mitigate this problem, we present in this paper a modified Kirchhoff prestack time migration well adapted to crooked-line seismic data. We first carry out a theoretical analysis on the propagation geometry of crooked-line seismic data and demonstrate problems associated with conventional 3D traveltime-based migration. Then, we present a modified 2D migration scheme based on the projection between the actual imaging trace within the vertical plane of seismic reflections and the output imaging trace. Compared with the 3D traveltime-based migration, our method not only ensures the accuracy of imaging depth but also improves the focusing and continuity of the migrated image. We use both synthetic and real data tests to validate the correctness and effectiveness of the proposed method.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.