埃塞俄比亚选定高粱基因型与环境之间的相互作用以及谷物产量和其他农艺性状的稳定性

IF 1.3 Q3 AGRONOMY
Chemeda Birhanu, Firew Mekbib, Dagnachew Lule, Zelalem Bekeko, Gezahegn Girma, Alemu Tirfessa, Getachew Ayana, Habte Nida, Tesfaye Mengiste
{"title":"埃塞俄比亚选定高粱基因型与环境之间的相互作用以及谷物产量和其他农艺性状的稳定性","authors":"Chemeda Birhanu,&nbsp;Firew Mekbib,&nbsp;Dagnachew Lule,&nbsp;Zelalem Bekeko,&nbsp;Gezahegn Girma,&nbsp;Alemu Tirfessa,&nbsp;Getachew Ayana,&nbsp;Habte Nida,&nbsp;Tesfaye Mengiste","doi":"10.1002/agg2.20544","DOIUrl":null,"url":null,"abstract":"<p>Environmental changes pose major impacts on the performance of crop genotypes with important implications for crop improvement strategies. Hence, breeders pay attention to the effects of genotype by environment interaction (GEI) to mine genetic resources and select adapted genotypes. Twenty sorghum genotypes selected from a large collection of Ethiopian sorghum landraces and two improved varieties were evaluated using a randomized complete block design with three replications at eight locations representing different environmental conditions in Ethiopia. The study aimed at assessing GEI and identifying stable and high-yielding genotypes of sorghum for grain yield and major agronomic traits. Analysis of variance and additive main effect and multiplicative interaction (AMMI) revealed highly significant (<i>p</i> ≤ 0.001) variance due to genotypes, environments, and GEI among all traits except for days to maturity. Plant height, days to maturity, panicle width, panicle weight, and grain yield were highly affected by environment and GEI, while days to flowering, panicle length, and 1000-grain weight were mainly affected by genotypic variations. The data also suggest the importance of considering GEI in screening for high-yielding and stable sorghum genotypes across environments. Among testing sites, Chawaka, Gute, and Uke were ideal environments for grain yield and Asosa was the most discriminative environment. Three genotypes (ETSL100808, Merera, and ETSL100474) were superior and stable across test environments for grain yield and related traits. Overall, based on mean grain yield and disease reaction, AMMI, GGE (genotype and genotype by environment interaction) biplot, and regression models, ETSL100808 was the most stable, high-yielding, and disease-tolerant sorghum genotype, suggesting its potential both in breeding program, as donor of traits, and for direct release as a variety.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20544","citationCount":"0","resultStr":"{\"title\":\"Genotype by environment interactions and stability for grain yield and other agronomic traits in selected sorghum genotypes in Ethiopia\",\"authors\":\"Chemeda Birhanu,&nbsp;Firew Mekbib,&nbsp;Dagnachew Lule,&nbsp;Zelalem Bekeko,&nbsp;Gezahegn Girma,&nbsp;Alemu Tirfessa,&nbsp;Getachew Ayana,&nbsp;Habte Nida,&nbsp;Tesfaye Mengiste\",\"doi\":\"10.1002/agg2.20544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Environmental changes pose major impacts on the performance of crop genotypes with important implications for crop improvement strategies. Hence, breeders pay attention to the effects of genotype by environment interaction (GEI) to mine genetic resources and select adapted genotypes. Twenty sorghum genotypes selected from a large collection of Ethiopian sorghum landraces and two improved varieties were evaluated using a randomized complete block design with three replications at eight locations representing different environmental conditions in Ethiopia. The study aimed at assessing GEI and identifying stable and high-yielding genotypes of sorghum for grain yield and major agronomic traits. Analysis of variance and additive main effect and multiplicative interaction (AMMI) revealed highly significant (<i>p</i> ≤ 0.001) variance due to genotypes, environments, and GEI among all traits except for days to maturity. Plant height, days to maturity, panicle width, panicle weight, and grain yield were highly affected by environment and GEI, while days to flowering, panicle length, and 1000-grain weight were mainly affected by genotypic variations. The data also suggest the importance of considering GEI in screening for high-yielding and stable sorghum genotypes across environments. Among testing sites, Chawaka, Gute, and Uke were ideal environments for grain yield and Asosa was the most discriminative environment. Three genotypes (ETSL100808, Merera, and ETSL100474) were superior and stable across test environments for grain yield and related traits. Overall, based on mean grain yield and disease reaction, AMMI, GGE (genotype and genotype by environment interaction) biplot, and regression models, ETSL100808 was the most stable, high-yielding, and disease-tolerant sorghum genotype, suggesting its potential both in breeding program, as donor of traits, and for direct release as a variety.</p>\",\"PeriodicalId\":7567,\"journal\":{\"name\":\"Agrosystems, Geosciences & Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.20544\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agrosystems, Geosciences & Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agg2.20544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrosystems, Geosciences & Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agg2.20544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

环境变化对作物基因型的表现有重大影响,对作物改良战略具有重要意义。因此,育种者关注基因型与环境交互作用(GEI)的影响,以挖掘遗传资源和选择适应的基因型。研究采用随机完全区组设计,在代表埃塞俄比亚不同环境条件的八个地点进行了三次重复,对从大量埃塞俄比亚高粱陆生品种和两个改良品种中选出的 20 种高粱基因型进行了评估。该研究旨在评估高粱的遗传变异指数(GEI),并确定粮食产量和主要农艺性状稳定的高产基因型。方差分析和加性主效应和乘性互作(AMMI)显示,除成熟天数外,基因型、环境和 GEI 在所有性状中都具有高度显著的方差(p ≤ 0.001)。植株高度、成熟天数、圆锥花序宽度、圆锥花序重量和谷物产量受环境和 GEI 的影响较大,而开花天数、圆锥花序长度和 1000 粒重则主要受基因型差异的影响。数据还表明,在不同环境下筛选高产稳产的高粱基因型时,考虑基因型指数非常重要。在测试点中,Chawaka、Gute 和 Uke 是谷物产量的理想环境,Asosa 是最具鉴别性的环境。三个基因型(ETSL100808、Merera 和 ETSL100474)在不同测试环境下的谷物产量和相关性状均表现优异且稳定。总之,根据平均谷物产量和病害反应、AMMI、GGE(基因型和基因型与环境的交互作用)双图谱和回归模型,ETSL100808 是最稳定、高产和抗病的高粱基因型,这表明它在育种计划中、作为性状供体和作为品种直接发布方面都具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genotype by environment interactions and stability for grain yield and other agronomic traits in selected sorghum genotypes in Ethiopia

Genotype by environment interactions and stability for grain yield and other agronomic traits in selected sorghum genotypes in Ethiopia

Environmental changes pose major impacts on the performance of crop genotypes with important implications for crop improvement strategies. Hence, breeders pay attention to the effects of genotype by environment interaction (GEI) to mine genetic resources and select adapted genotypes. Twenty sorghum genotypes selected from a large collection of Ethiopian sorghum landraces and two improved varieties were evaluated using a randomized complete block design with three replications at eight locations representing different environmental conditions in Ethiopia. The study aimed at assessing GEI and identifying stable and high-yielding genotypes of sorghum for grain yield and major agronomic traits. Analysis of variance and additive main effect and multiplicative interaction (AMMI) revealed highly significant (p ≤ 0.001) variance due to genotypes, environments, and GEI among all traits except for days to maturity. Plant height, days to maturity, panicle width, panicle weight, and grain yield were highly affected by environment and GEI, while days to flowering, panicle length, and 1000-grain weight were mainly affected by genotypic variations. The data also suggest the importance of considering GEI in screening for high-yielding and stable sorghum genotypes across environments. Among testing sites, Chawaka, Gute, and Uke were ideal environments for grain yield and Asosa was the most discriminative environment. Three genotypes (ETSL100808, Merera, and ETSL100474) were superior and stable across test environments for grain yield and related traits. Overall, based on mean grain yield and disease reaction, AMMI, GGE (genotype and genotype by environment interaction) biplot, and regression models, ETSL100808 was the most stable, high-yielding, and disease-tolerant sorghum genotype, suggesting its potential both in breeding program, as donor of traits, and for direct release as a variety.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agrosystems, Geosciences & Environment
Agrosystems, Geosciences & Environment Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
80
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信