人工智能在糖尿病管理中的应用:糖尿病诊断的革命;文献综述

Alireza Keshtkar, Nazanin Ayareh, Farnaz Atighi, Reza Hamidi, Parsa Yazdanpanahi, Alireza Karimi, Arzhang Naseri, Fatemeh Hosseini, Mohammadhossein Dabbaghmanesh
{"title":"人工智能在糖尿病管理中的应用:糖尿病诊断的革命;文献综述","authors":"Alireza Keshtkar, Nazanin Ayareh, Farnaz Atighi, Reza Hamidi, Parsa Yazdanpanahi, Alireza Karimi, Arzhang Naseri, Fatemeh Hosseini, Mohammadhossein Dabbaghmanesh","doi":"10.5812/semj-146903","DOIUrl":null,"url":null,"abstract":"Context: The diagnostic methods for diabetes mellitus (DM), a chronic metabolic disorder characterized by elevated blood sugar levels, are rapidly evolving thanks to artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL). This review explores the applications of AI in risk assessment and diagnosing different types of diabetes. Evidence Acquisition: The review highlights the effectiveness of various ML models, including support vector machines (SVMs), random forests (RFs), and DL techniques like convolutional neural networks (CNNs), in achieving high diagnostic accuracy. Challenges include limited data availability, interpretability of complex models, and the need for standardized performance metrics. Results: Machine learning methods like SVMs and RFs are highly effective at diagnosing different types of diabetes, and DL techniques like CNNs also show great promise. Conclusions: Overall, AI has immense potential to revolutionize diabetes diagnosis by facilitating risk assessment and early detection, improving treatment efficacy, and preventing severe complications.","PeriodicalId":507014,"journal":{"name":"Shiraz E-Medical Journal","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence in Diabetes Management: Revolutionizing the Diagnosis of Diabetes Mellitus; a Literature Review\",\"authors\":\"Alireza Keshtkar, Nazanin Ayareh, Farnaz Atighi, Reza Hamidi, Parsa Yazdanpanahi, Alireza Karimi, Arzhang Naseri, Fatemeh Hosseini, Mohammadhossein Dabbaghmanesh\",\"doi\":\"10.5812/semj-146903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context: The diagnostic methods for diabetes mellitus (DM), a chronic metabolic disorder characterized by elevated blood sugar levels, are rapidly evolving thanks to artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL). This review explores the applications of AI in risk assessment and diagnosing different types of diabetes. Evidence Acquisition: The review highlights the effectiveness of various ML models, including support vector machines (SVMs), random forests (RFs), and DL techniques like convolutional neural networks (CNNs), in achieving high diagnostic accuracy. Challenges include limited data availability, interpretability of complex models, and the need for standardized performance metrics. Results: Machine learning methods like SVMs and RFs are highly effective at diagnosing different types of diabetes, and DL techniques like CNNs also show great promise. Conclusions: Overall, AI has immense potential to revolutionize diabetes diagnosis by facilitating risk assessment and early detection, improving treatment efficacy, and preventing severe complications.\",\"PeriodicalId\":507014,\"journal\":{\"name\":\"Shiraz E-Medical Journal\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Shiraz E-Medical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5812/semj-146903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shiraz E-Medical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/semj-146903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:糖尿病(DM)是一种以血糖水平升高为特征的慢性代谢性疾病,由于人工智能(AI),尤其是机器学习(ML)和深度学习(DL)的出现,糖尿病的诊断方法正在迅速发展。本综述探讨了人工智能在风险评估和不同类型糖尿病诊断中的应用。证据获取:综述强调了各种 ML 模型(包括支持向量机 (SVM)、随机森林 (RF) 和卷积神经网络 (CNN) 等 DL 技术)在实现高诊断准确性方面的有效性。面临的挑战包括有限的数据可用性、复杂模型的可解释性以及对标准化性能指标的需求。结果SVMs 和 RFs 等机器学习方法在诊断不同类型的糖尿病方面非常有效,CNNs 等 DL 技术也大有可为。结论:总体而言,人工智能在促进风险评估和早期检测、提高治疗效果和预防严重并发症方面具有巨大潜力,可为糖尿病诊断带来革命性变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Intelligence in Diabetes Management: Revolutionizing the Diagnosis of Diabetes Mellitus; a Literature Review
Context: The diagnostic methods for diabetes mellitus (DM), a chronic metabolic disorder characterized by elevated blood sugar levels, are rapidly evolving thanks to artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL). This review explores the applications of AI in risk assessment and diagnosing different types of diabetes. Evidence Acquisition: The review highlights the effectiveness of various ML models, including support vector machines (SVMs), random forests (RFs), and DL techniques like convolutional neural networks (CNNs), in achieving high diagnostic accuracy. Challenges include limited data availability, interpretability of complex models, and the need for standardized performance metrics. Results: Machine learning methods like SVMs and RFs are highly effective at diagnosing different types of diabetes, and DL techniques like CNNs also show great promise. Conclusions: Overall, AI has immense potential to revolutionize diabetes diagnosis by facilitating risk assessment and early detection, improving treatment efficacy, and preventing severe complications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信